Prediction model for compressive strength of basic concrete mixture using artificial neural networks

被引:0
|
作者
Srđan Kostić
Dejan Vasović
机构
[1] University of Belgrade Faculty of Mining and Geology,Department of Geology
[2] University of Banja Luka,Faculty of Mining
[3] University of Belgrade Faculty of Architecture,Department of Architectural Technologies
来源
关键词
Concrete; Compressive strength; Artificial neural network; Robustness; Global sensitivity analysis;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we propose a prediction model for concrete compressive strength using artificial neural networks. In experimental part of the research, 75 concrete samples with various w/c ratios were exposed to freezing and thawing, after which their compressive strength was determined at different age, viz. 7, 20 and 32 days. In computational phase of the research, different prediction models for concrete compressive strength were developed using artificial neural networks with w/c ratio, age and number of freeze/thaw cycles as three input nodes. We examined three-layer feed-forward back-propagation neural networks with 2, 6 and 9 hidden nodes using four different learning algorithms. The most accurate prediction models, with the highest coefficient of determination (R2 > 0.87), and with all of the predicted data falling within the 95 % prediction interval, were obtained with six hidden nodes using Levenberg–Marquardt, scaled conjugate gradient and one-step secant algorithms, and with nine hidden nodes using Broyden–Fletcher–Goldfarb–Shannon algorithm. Further analysis showed that relative error between the predicted and experimental data increases up to acceptable ≈15 %, which confirms that proposed ANN models are robust to the consistency of training and validation output data. Accuracy of the proposed models was further verified by low values of standard statistical errors. In the final phase of the research, individual effect of each input parameter was examined using the global sensitivity analysis, whose results indicated that w/c ratio has the strongest impact on concrete compressive strength.
引用
收藏
页码:1005 / 1024
页数:19
相关论文
共 50 条
  • [31] Optimizing compressive strength prediction of pervious concrete using artificial neural network
    Wijekoon, Sathushka Heshan Bandara
    Janarth, Asoharasa
    Dharmar, Joseph
    Vinojan, Perinparasa
    Sathiparan, Navaratnarajah
    Subramaniam, Daniel Niruban
    ENGINEERING RESEARCH EXPRESS, 2025, 7 (01):
  • [32] Using Artificial Neural Networks Approach to Estimate Compressive Strength for Rubberized Concrete
    Bachir, Rahali
    Mohammed, Aissa Mamoune Sidi
    Habib, Trouzine
    PERIODICA POLYTECHNICA-CIVIL ENGINEERING, 2018, 62 (04): : 858 - 865
  • [33] Compressive Strength Prediction of Rice Husk Ash Concrete Using a Hybrid Artificial Neural Network Model
    Li, Chuanqi
    Mei, Xiancheng
    Dias, Daniel
    Cui, Zhen
    Zhou, Jian
    MATERIALS, 2023, 16 (08)
  • [34] PREDICTION OF COMPRESSIVE STRENGTH OF RECYCLED AGGREGATE CONCRETE USING ARTIFICAL NEURAL NETWORKS
    Duan, Z. H.
    Kou, S. C.
    Poon, C. S.
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON SUSTAINABLE URBANIZATION (ICSU 2010), 2010, : 931 - 939
  • [35] Non-Destructive Prediction of Concrete Compressive Strength Using Neural Networks
    Khashman, Adnan
    Akpinar, Pinar
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS 2017), 2017, 108 : 2358 - 2362
  • [36] Compressive strength prediction of ternary blended geopolymer concrete using artificial neural networks and support vector regression
    Yaswanth, K. K.
    Kumar, V. Sathish
    Revathy, J.
    Murali, G.
    Pavithra, C.
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2024, 9 (02)
  • [37] Prediction of the compressive strength of self-compacting concrete using artificial neural networks based on rheological parameters
    el Asri, Yousef
    Benaicha, Mouhcine
    Zaher, Mounir
    Hafidi Alaoui, Adil
    STRUCTURAL CONCRETE, 2022, 23 (06) : 3864 - 3876
  • [38] Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks
    Siddique, Rafat
    Aggarwal, Paratibha
    Aggarwal, Yogesh
    ADVANCES IN ENGINEERING SOFTWARE, 2011, 42 (10) : 780 - 786
  • [39] Compressive strength prediction of ternary blended geopolymer concrete using artificial neural networks and support vector regression
    K. K. Yaswanth
    V. Sathish Kumar
    J. Revathy
    G. Murali
    C. Pavithra
    Innovative Infrastructure Solutions, 2024, 9
  • [40] Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks
    Ceryan, Nurcihan
    Okkan, Umut
    Kesimal, Ayhan
    ENVIRONMENTAL EARTH SCIENCES, 2013, 68 (03) : 807 - 819