Thermally induced flexible wood based on phase change materials for thermal energy storage and management

被引:0
|
作者
Xianxian Lin
Shifang Jia
Jingyi Liu
Xiaoke Li
Xi Guo
Weisheng Sun
机构
[1] Zhejiang Agricultural and Forestry University,College of Engineering
[2] Huzhou hending products testing center,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The applications of composite phase change materials were limited due to their poor energy utilization efficiency, low thermal conductivity and strong rigidity. In this work, thermally induced flexible wood based on phase change material was fabricated by impregnating delignified wood (DW) with graphene and a novel kind of hyperbranched polyurethane. The wood composite showed excellent softness and flexibility during the heating process of hyperbranched polyurethane. It also displayed suitable phase change temperature (28.1 °C and 36.3 °C) and acceptable latent heat (64.29 J/g and 70.26 J/g) for daily applications. Thermal conductivity of the composite reached 0.417 (W*m−1 K−1) after adding graphene, which was enhanced approximately by 414% compared with pure wood. The light harvest efficiency of the composite was also improved after the addition of graphene. Therefore, the thermally induced flexible wood based on phase change material has great potential for building energy conservation and wearable energy storage devices due to its excellent flexibility, high thermal energy storage capacity and outstanding temperature regulating performance.
引用
收藏
页码:16570 / 16581
页数:11
相关论文
共 50 条
  • [11] Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage
    Li, Wan-Wan
    Cheng, Wen-Long
    Xie, Biao
    Liu, Na
    Zhang, Li-Song
    ENERGY CONVERSION AND MANAGEMENT, 2017, 149 : 1 - 12
  • [12] Biobased phase change materials in energy storage and thermal management technologies
    Simonsen, Galina
    Ravotti, Rebecca
    O'Neill, Poppy
    Stamatiou, Anastasia
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 184
  • [13] Thermally induced flexible phase change composites with enhanced thermal conductivity for solar thermal conversion and storage
    Bing, Naici
    Wu, Guanzheng
    Yang, Jie
    Chen, Lifei
    Xie, Huaqing
    Yu, Wei
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 240
  • [14] Phase change materials for thermal energy storage
    Pielichowska, Kinga
    Pielichowski, Krzysztof
    PROGRESS IN MATERIALS SCIENCE, 2014, 65 : 67 - 123
  • [15] Flexible and highly thermally conductive phase change materials with hierarchical dual network for thermal management
    Xue, Sen
    Zhang, Guorui
    Zhang, Yongzheng
    Wu, Kai
    Fu, Qiang
    CHEMICAL ENGINEERING JOURNAL, 2024, 497
  • [16] Phase change materials based thermal energy storage for solar energy systems
    Ali, Hafiz Muhammad
    JOURNAL OF BUILDING ENGINEERING, 2022, 56
  • [17] Flexible Phase Change Composites with Excellent Thermal Energy Storage for the Thermal Management of Electronic Devices
    Song, Keliang
    Liu, Fangxing
    Song, Jinbao
    Zhou, Wei
    Jiang, Zhuoni
    He, Fangfang
    He, Guansong
    Yang, Zhijian
    Yang, Wenbin
    ACS APPLIED POLYMER MATERIALS, 2024, 6 (24): : 15105 - 15113
  • [18] Numerical simulation of thermal energy storage based on phase change materials
    Seitov, A.
    Akhmetov, B.
    Georgiev, A. G.
    Kaltayev, A.
    Popov, R. K.
    Dzhonova-Atanasova, D. B.
    Tungatarova, M. S.
    BULGARIAN CHEMICAL COMMUNICATIONS, 2016, 48 : 181 - 188
  • [19] Flame retardant wood-based phase change materials with inorganic hydrated salt for thermal energy storage
    Liu, Kunyang
    Zhou, Jiazuo
    Liu, Yifan
    Mao, Ning
    Sun, Longxiang
    Wang, Yanwei
    Xu, Li
    Zhang, Kai
    Wang, Chengyu
    Yang, Haiyue
    INDUSTRIAL CROPS AND PRODUCTS, 2025, 227
  • [20] Flexible phase change materials for thermal storage and temperature control
    Sun, Qinrong
    Zhang, Haiquan
    Xue, Jiajia
    Yu, Xiaoping
    Yuan, Yanping
    Cao, Xiaoling
    CHEMICAL ENGINEERING JOURNAL, 2018, 353 : 920 - 929