Catalan generating functions for bounded operators

被引:0
|
作者
Pedro J. Miana
Natalia Romero
机构
[1] Universidad de Zaragoza,Departamento de Matemáticas, Instituto Universitario de Matemáticas y Aplicaciones
[2] Universidad de la Rioja,Departamento de Matemáticas y Computación
来源
关键词
Catalan numbers; Generating function; Power-bounded operators; Quadratic equation; Iterative methods; 11B75; 47A10; 11D09; 65F10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the solution of the quadratic equation TY2-Y+I=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$TY^2-Y+I=0$$\end{document} where T is a linear and bounded operator on a Banach space X. We describe the spectrum set and the resolvent operator of Y in terms of the ones of T. In the case that 4T is a power-bounded operator, we show that a solution (named Catalan generating function) of the above equation is given by the Taylor series C(T):=∑n=0∞CnTn,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} C(T):=\sum _{n=0}^\infty C_nT^n, \end{aligned}$$\end{document}where the sequence (Cn)n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(C_n)_{n\ge 0}$$\end{document} is the well-known Catalan numbers sequence. We express C(T) by means of an integral representation which involves the resolvent operator (λT)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda T)^{-1}$$\end{document}. Some particular examples to illustrate our results are given, in particular an iterative method defined for square matrices T which involves Catalan numbers.
引用
收藏
相关论文
共 50 条
  • [31] PAIRS OF BERGMAN OPERATORS WITH POLYNOMIAL GENERATING FUNCTIONS
    KRACHT, M
    KREYSZIG, EO
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (07): : A710 - A710
  • [32] Uniformly Bounded Composition Operators on the Space of Bounded Variation Functions in the Sense of Waterman
    Wadie Aziz
    Tomas Ereú
    José A. Guerrero
    Mediterranean Journal of Mathematics, 2016, 13 : 4305 - 4320
  • [33] Uniformly Bounded Composition Operators on the Space of Bounded Variation Functions in the Sense of Waterman
    Aziz, Wadie
    Ereu, Tomas
    Guerrero, Jose A.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) : 4305 - 4320
  • [34] Sequences of composition operators in spaces of functions of bounded Φ-variation
    O. E. Galkin
    Mathematical Notes, 2009, 85 : 328 - 339
  • [35] Properties of multiplication operators on the space of functions of bounded φ-variation
    Castillo, Rene E.
    Ramos-Fernandez, Julio C.
    Vacca-Gonzalez, Harold
    OPEN MATHEMATICS, 2021, 19 (01): : 492 - 504
  • [36] Integral operators mapping into the space of bounded analytic functions
    Contreras, Manuel D.
    Pelaez, Jose A.
    Pommerenke, Christian
    Rattya, Jouni
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (10) : 2899 - 2943
  • [37] Bounded characteristic functions and models for noncontractive sequences of operators
    Aurelian Gheondea
    Gelu Popescu
    Integral Equations and Operator Theory, 2003, 45 : 15 - 38
  • [38] Bounded operators on the weighted spaces of holomorphic functions on the polydiscs
    Harutyunyan, A. V.
    Lusky, W.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2009, 54 (01) : 23 - 40
  • [39] Weighted Composition Operators on the Space of Bounded Harmonic Functions
    Izuchi, Kei Ji
    Izuchi, Yuko
    Ohno, Shuichi
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 71 (01) : 91 - 111
  • [40] On Superposition Operators in Spaces of Regular and of Bounded Variation Functions
    Michalak, Artur
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2016, 35 (03): : 285 - 308