Catalan generating functions for bounded operators

被引:0
|
作者
Pedro J. Miana
Natalia Romero
机构
[1] Universidad de Zaragoza,Departamento de Matemáticas, Instituto Universitario de Matemáticas y Aplicaciones
[2] Universidad de la Rioja,Departamento de Matemáticas y Computación
来源
关键词
Catalan numbers; Generating function; Power-bounded operators; Quadratic equation; Iterative methods; 11B75; 47A10; 11D09; 65F10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the solution of the quadratic equation TY2-Y+I=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$TY^2-Y+I=0$$\end{document} where T is a linear and bounded operator on a Banach space X. We describe the spectrum set and the resolvent operator of Y in terms of the ones of T. In the case that 4T is a power-bounded operator, we show that a solution (named Catalan generating function) of the above equation is given by the Taylor series C(T):=∑n=0∞CnTn,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} C(T):=\sum _{n=0}^\infty C_nT^n, \end{aligned}$$\end{document}where the sequence (Cn)n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(C_n)_{n\ge 0}$$\end{document} is the well-known Catalan numbers sequence. We express C(T) by means of an integral representation which involves the resolvent operator (λT)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda T)^{-1}$$\end{document}. Some particular examples to illustrate our results are given, in particular an iterative method defined for square matrices T which involves Catalan numbers.
引用
收藏
相关论文
共 50 条
  • [1] Catalan generating functions for bounded operators
    Miana, Pedro J.
    Romero, Natalia
    ANNALS OF FUNCTIONAL ANALYSIS, 2023, 14 (04)
  • [2] Powers of Catalan generating functions for bounded operators
    Miana, Pedro J. J.
    Romero, Natalia
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (12) : 13262 - 13278
  • [3] Catalan Generating Functions for Generators of Uni-parametric Families of Operators
    Mahillo, Alejandro
    Miana, Pedro J.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (05)
  • [4] Catalan Generating Functions for Generators of Uni-parametric Families of Operators
    Alejandro Mahillo
    Pedro J. Miana
    Mediterranean Journal of Mathematics, 2022, 19
  • [5] Logarithms of Catalan Generating Functions: A Combinatorial Approach
    Jansen, Sabine
    Kolesnikov, Leonid
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 31 (01):
  • [6] GENERATING FUNCTIONS FOR HECKE OPERATORS
    Shehadeh, Hala Al Hajj
    Jaafar, Samar
    Khuri-Makdisi, Kamal
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2009, 5 (01) : 125 - 140
  • [7] GENERATING FUNCTIONS OF VOLTERRA OPERATORS
    HROMOV, AP
    MATHEMATICS OF THE USSR-SBORNIK, 1977, 31 (03): : 409 - 423
  • [8] On Iterated Generating Functions for Integer Sequences, and Catalan Polynomials
    Clapperton, James A.
    Larcombe, Peter J.
    Fennessey, Eric J.
    UTILITAS MATHEMATICA, 2008, 77 : 3 - 33
  • [9] ASYMPTOTICS FOR GENERATING FUNCTIONS OF THE FUSS-CATALAN NUMBERS
    Azevedo, Assis
    Azevedo, Davide
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2023, 26 (04): : 841 - 850
  • [10] Entropy and the approximation of bounded functions and operators
    Richter, C
    Stephani, I
    ARCHIV DER MATHEMATIK, 1996, 67 (06) : 478 - 492