An approximation of the minimum vertex cover in a graph

被引:0
|
作者
Hiroshi Nagamochi
Toshihide Ibaraki
机构
[1] Kyoto University,Department of Applied Mathematics and Physics
关键词
graph; vertex cover; matching; cycle; approximation algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
For a given undirected graphG withn vertices andm edges, we present an approximation algorithm for the minimum vertex cover problem. Our algorithm finds a vertex cover within\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$2 - \frac{{8m}}{{13n^2 + 8m}}$$ \end{document} of the optimal size inO(nm) time.
引用
收藏
页码:369 / 375
页数:6
相关论文
共 50 条
  • [31] On approximation of max-vertex-cover
    Han, QM
    Ye, YY
    Zhang, HT
    Zhang, JW
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2002, 143 (02) : 342 - 355
  • [32] Private Approximation of Clustering and Vertex Cover
    Amos Beimel
    Renen Hallak
    Kobbi Nissim
    computational complexity, 2009, 18
  • [33] MAJORITY VERTEX (EDGE) COVER OF A GRAPH
    Vijayaseetha, N.
    Subramani, R.
    Begam, B. Apsana
    Priya, P.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 21 (02): : 965 - 972
  • [34] Private Approximation of Clustering and Vertex Cover
    Beimel, Amos
    Hallak, Renen
    Nissim, Kobbi
    COMPUTATIONAL COMPLEXITY, 2009, 18 (03) : 435 - 494
  • [35] Improving Vertex Cover as a Graph Parameter
    Ganian, Robert
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2015, 17 (02): : 77 - 100
  • [36] On approximation of the vertex cover problem in hypergraphs
    Okun, Michael
    Discrete Optimization, 2005, 2 (01) : 101 - 111
  • [37] The vertex-cover polynomial of a graph
    Dong, FM
    Hendy, MD
    Teo, KL
    Little, CHC
    DISCRETE MATHEMATICS, 2002, 250 (1-3) : 71 - 78
  • [38] Clever Steady Strategy Algorithm: A simple and efficient approximation algorithm for minimum vertex cover problem
    Fayaz, Muhammad
    Arshad, Shakeel
    2015 13TH INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY (FIT), 2015, : 277 - 282
  • [39] Graph Convolutional Neural Networks with AM-Actor-Critic for Minimum Vertex Cover Problem
    Tian, Hong
    Li, Dazi
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 3841 - 3846
  • [40] The minimum vertex-vertex dominating Laplacian energy of a graph
    Sayinath Udupa, N. V.
    Bhat, R. S.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (07)