An approximation of the minimum vertex cover in a graph

被引:0
|
作者
Hiroshi Nagamochi
Toshihide Ibaraki
机构
[1] Kyoto University,Department of Applied Mathematics and Physics
关键词
graph; vertex cover; matching; cycle; approximation algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
For a given undirected graphG withn vertices andm edges, we present an approximation algorithm for the minimum vertex cover problem. Our algorithm finds a vertex cover within\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$2 - \frac{{8m}}{{13n^2 + 8m}}$$ \end{document} of the optimal size inO(nm) time.
引用
收藏
页码:369 / 375
页数:6
相关论文
共 50 条
  • [1] An approximation of the minimum vertex cover in a graph
    Nagamochi, H
    Ibaraki, T
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 1999, 16 (03) : 369 - 375
  • [2] An Approximation Algorithm for the Minimum Vertex Cover Problem
    Chen, Jingrong
    Kou, Lei
    Cui, Xiaochuan
    GREEN INTELLIGENT TRANSPORTATION SYSTEM AND SAFETY, 2016, 138 : 180 - 185
  • [3] An Approximation Algorithm for Minimum Vertex Cover on General Graphs
    Li, Shaohua
    Wang, Jianxin
    Chen, Jianer
    Wang, Zhijian
    THIRD INTERNATIONAL SYMPOSIUM ON ELECTRONIC COMMERCE AND SECURITY WORKSHOPS (ISECS 2010), 2010, : 249 - 252
  • [4] A novel parameterised approximation algorithm for MINIMUM VERTEX COVER
    Brankovic, Ljiljana
    Fernau, Henning
    THEORETICAL COMPUTER SCIENCE, 2013, 511 : 85 - 108
  • [5] Approximation algorithms to minimum vertex cover problems on polygons and terrains
    Tomás, AP
    Bajuelos, AL
    Marques, F
    COMPUTATIONAL SCIENCE - ICCS 2003, PT I, PROCEEDINGS, 2003, 2657 : 869 - 878
  • [6] A GRAPH APPROXIMATION HEURISTIC FOR THE VERTEX COVER PROBLEM ON PLANAR GRAPHS
    MEEK, DL
    PARKER, RG
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1994, 72 (03) : 588 - 597
  • [7] PTAS for minimum k-path vertex cover in ball graph
    Zhang, Zhao
    Li, Xiaoting
    Shi, Yishuo
    Nie, Hongmei
    Zhu, Yuqing
    INFORMATION PROCESSING LETTERS, 2017, 119 : 9 - 13
  • [8] Performance Comparison of Approximation Algorithms for the Minimum Weight Vertex Cover Problem
    Taoka, Satoshi
    Watanabe, Toshimasa
    2012 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 2012), 2012, : 632 - 635
  • [9] Approximation algorithm for minimum connected 3-path vertex cover
    Liu, Pengcheng
    Zhang, Zhao
    Li, Xianyue
    Wu, Weili
    DISCRETE APPLIED MATHEMATICS, 2020, 287 : 77 - 84
  • [10] Approximation algorithms for minimum (weight) connected k-path vertex cover
    Li, Xiaosong
    Zhang, Zhao
    Huang, Xiaohui
    DISCRETE APPLIED MATHEMATICS, 2016, 205 : 101 - 108