Complete Minimal Submanifolds with Nullity in the Hyperbolic Space

被引:0
|
作者
Marcos Dajczer
Theodoros Kasioumis
Andreas Savas-Halilaj
Theodoros Vlachos
机构
[1] IMPA,Department of Mathematics
[2] University of Ioannina,undefined
来源
关键词
Minimal submanifolds; Index of relative nullity; Real-analytic set; Omori–Yau maximum principle; 53C42; 53C40;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate complete minimal submanifolds f:M3→Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f: M^3\rightarrow \mathbb {H}^n$$\end{document} in hyperbolic space with index of relative nullity at least one at any point. The case when the ambient space is either the Euclidean space or the round sphere was already studied in Dajczer et al. (Math Z 287: 481–491, 2017 and Comment Math Helv, to appear, 2017), respectively. If the scalar curvature is bounded from below we conclude that the submanifold has to be either totally geodesic or a generalized cone over a complete minimal surface lying in an equidistant submanifold of Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}^n$$\end{document}.
引用
收藏
页码:413 / 427
页数:14
相关论文
共 50 条