A Note on the Invertibility of the Gabor Frame Operator on Certain Modulation Spaces

被引:0
|
作者
Dae Gwan Lee
Friedrich Philipp
Felix Voigtlaender
机构
[1] Mathematisch–Geographische Fakultät,Technische Universität Ilmenau
[2] Katholische Universität Eichstätt–Ingolstadt,Mathematical Institute for Machine Learning and Data Science (MIDS)
[3] Institute for Mathematics,undefined
[4] Katholische Universität Eichstätt–Ingolstadt,undefined
关键词
Gabor frames; Sobolev space; Invariance; Dual frame; Regularity of dual window; Primary: 42C15; Secondary: 42C40; 46E35; 46B15;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Gabor frames generated by a general lattice and a window function that belongs to one of the following spaces: the Sobolev space V1=H1(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_1 = H^1(\mathbb {R}^d)$$\end{document}, the weighted L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-space V2=L1+|x|2(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_2 = L_{1 + |x|}^2(\mathbb {R}^d)$$\end{document}, and the space V3=H1(Rd)=V1∩V2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_3 = \mathbb {H}^1(\mathbb {R}^d) = V_1 \cap V_2$$\end{document} consisting of all functions with finite uncertainty product; all these spaces can be described as modulation spaces with respect to suitable weighted L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} spaces. In all cases, we prove that the space of Bessel vectors in Vj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_j$$\end{document} is mapped bijectively onto itself by the Gabor frame operator. As a consequence, if the window function belongs to one of the three spaces, then the canonical dual window also belongs to the same space. In fact, the result not only applies to frames, but also to frame sequences.
引用
收藏
相关论文
共 50 条
  • [21] Invertibility of Frame Operators on Besov-Type Decomposition Spaces
    Romero, Jose Luis
    van Velthoven, Jordy Timo
    Voigtlaender, Felix
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (05)
  • [22] Invertibility of generalized g-frame multipliers in Hilbert spaces
    Moosavianfard, Z.
    Abolghasemi, M.
    Tolooei, Y.
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (08): : 1590 - 1609
  • [23] Invertibility of Frame Operators on Besov-Type Decomposition Spaces
    José Luis Romero
    Jordy Timo van Velthoven
    Felix Voigtlaender
    The Journal of Geometric Analysis, 2022, 32
  • [24] WEAK INVERTIBILITY AND FACTORIZATION IN CERTAIN SPACES OF ANALYTIC-FUNCTIONS
    FRANKFURT, R
    LECTURE NOTES IN MATHEMATICS, 1984, 1043 : 386 - 389
  • [26] A Note on the Exactness of Operator Spaces
    Dong, Z.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2010, 53 (02): : 239 - 246
  • [27] Behavior of Gabor frame operators on Wiener amalgam spaces
    Poria, Anirudha
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2016, 14 (04)
  • [28] On solving operator equations by Galerkin's method with Gabor frame
    Zarmehi, Fatemeh
    Tavakoli, Ali
    MATHEMATICAL COMMUNICATIONS, 2018, 23 (02) : 227 - 245
  • [29] Operator theory and modulation spaces
    Heil, Christopher
    Larson, David
    FRAMES AND OPERATOR THEORY IN ANALYSIS AND SIGNAL PROCESSING, 2008, 451 : 137 - 150
  • [30] Hardy Spaces of Certain Convolution Operator
    Rajbala
    Prajapat, Jugal Kishore
    KYUNGPOOK MATHEMATICAL JOURNAL, 2020, 60 (01): : 127 - 132