Local Density for Two-Dimensional One-Component Plasma

被引:0
|
作者
Roland Bauerschmidt
Paul Bourgade
Miika Nikula
Horng-Tzer Yau
机构
[1] Harvard University,Department of Mathematics
[2] New York University,Courant Institute of Mathematical Sciences
[3] Harvard University,Center of Mathematical Sciences and Applications
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the classical two-dimensional one-component plasma of N positively charged point particles, interacting via the Coulomb potential and confined by an external potential. For the specific inverse temperature β=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta=1}$$\end{document} (in our normalization), the charges are the eigenvalues of random normal matrices, and the model is exactly solvable as a determinantal point process. For any positive temperature, using a multiscale scheme of iterated mean-field bounds, we prove that the equilibrium measure provides the local particle density down to the optimal scale of No(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N^{o(1)}}$$\end{document} particles. Using this result and the loop equation, we further prove that the particle configurations are rigid, in the sense that the fluctuations of smooth linear statistics on any scale are No(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N^{o(1)}}$$\end{document}.
引用
收藏
页码:189 / 230
页数:41
相关论文
共 50 条