Local Density for Two-Dimensional One-Component Plasma

被引:0
|
作者
Roland Bauerschmidt
Paul Bourgade
Miika Nikula
Horng-Tzer Yau
机构
[1] Harvard University,Department of Mathematics
[2] New York University,Courant Institute of Mathematical Sciences
[3] Harvard University,Center of Mathematical Sciences and Applications
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the classical two-dimensional one-component plasma of N positively charged point particles, interacting via the Coulomb potential and confined by an external potential. For the specific inverse temperature β=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta=1}$$\end{document} (in our normalization), the charges are the eigenvalues of random normal matrices, and the model is exactly solvable as a determinantal point process. For any positive temperature, using a multiscale scheme of iterated mean-field bounds, we prove that the equilibrium measure provides the local particle density down to the optimal scale of No(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N^{o(1)}}$$\end{document} particles. Using this result and the loop equation, we further prove that the particle configurations are rigid, in the sense that the fluctuations of smooth linear statistics on any scale are No(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N^{o(1)}}$$\end{document}.
引用
收藏
页码:189 / 230
页数:41
相关论文
共 50 条
  • [1] Local Density for Two-Dimensional One-Component Plasma
    Bauerschmidt, Roland
    Bourgade, Paul
    Nikula, Miika
    Yau, Horng-Tzer
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 356 (01) : 189 - 230
  • [2] THE TWO-DIMENSIONAL ONE-COMPONENT PLASMA ON A PERIODIC STRIP
    CHOQUARD, P
    HELVETICA PHYSICA ACTA, 1981, 54 (02): : 332 - 332
  • [3] FREEZING OF THE CLASSICAL TWO-DIMENSIONAL, ONE-COMPONENT PLASMA
    RADLOFF, PL
    BAGCHI, B
    CERJAN, C
    RICE, SA
    JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (03): : 1406 - 1415
  • [4] Is the Two-Dimensional One-Component Plasma Exactly Solvable?
    L. Šamaj
    Journal of Statistical Physics, 2004, 117 : 131 - 158
  • [5] ON THE CLASSICAL TWO-DIMENSIONAL ONE-COMPONENT COULOMB PLASMA
    ALASTUEY, A
    JANCOVICI, B
    JOURNAL DE PHYSIQUE, 1981, 42 (01): : 1 - 12
  • [6] DEBYE THERMODYNAMICS FOR THE TWO-DIMENSIONAL ONE-COMPONENT PLASMA
    DEUTSCH, C
    DEWITT, HE
    FURUTANI, Y
    PHYSICAL REVIEW A, 1979, 20 (06): : 2631 - 2633
  • [7] EXACT RESULTS FOR THE TWO-DIMENSIONAL ONE-COMPONENT PLASMA
    NICOLAIDES, D
    PHYSICS LETTERS A, 1984, 103 (05) : 277 - 278
  • [8] Charge Fluctuations in the Two-Dimensional One-Component Plasma
    D. Levesque
    J.-J. Weis
    J. L. Lebowitz
    Journal of Statistical Physics, 2000, 100 : 209 - 222
  • [9] Two-dimensional one-component plasma in a quadrupolar field
    Forrester, PJ
    Jancovici, B
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (05): : 941 - 949
  • [10] Is the two-dimensional one-component plasma exactly solvable?
    Samaj, L
    JOURNAL OF STATISTICAL PHYSICS, 2004, 117 (1-2) : 131 - 158