Purely Infinite Simple Ultragraph Leavitt Path Algebras

被引:0
|
作者
T. G. Nam
N. D. Nam
机构
[1] Institute of Mathematics,Faculty of Pedagogy
[2] VAST,undefined
[3] Ha Tinh University,undefined
来源
关键词
Ultragraph Leavitt path algebras; purely infinite simplicity; graded simplicity; von Neumann regularity; 16S88; 16S99; 05C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we give necessary and sufficient conditions under which the Leavitt path algebra LK(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_K(\mathcal {G})$$\end{document} of an ultragraph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document} over a field K is purely infinite simple and that it is von Neumann regular. Consequently, we obtain that every graded simple ultragraph Leavitt path algebra is either a locally matricial algebra, or a full matrix ring over K[x,x-1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K[x, x^{-1}]$$\end{document}, or a purely infinite simple algebra.
引用
收藏
相关论文
共 50 条
  • [31] Unital extensions of AF-algebras by purely infinite simple algebras
    Junping Liu
    Changguo Wei
    [J]. Czechoslovak Mathematical Journal, 2014, 64 : 989 - 1001
  • [32] Unital extensions of AF-algebras by purely infinite simple algebras
    Liu, Junping
    Wei, Changguo
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (04) : 989 - 1001
  • [33] Finitely presented simple modules over Leavitt path algebras
    Ara, Pere
    Rangaswamy, Kulumani M.
    [J]. JOURNAL OF ALGEBRA, 2014, 417 : 333 - 352
  • [34] Simple flat Leavitt path algebras are von Neumann regular
    Ambily, Ambattu Asokan
    Hazrat, Roozbeh
    Li, Huanhuan
    [J]. COMMUNICATIONS IN ALGEBRA, 2019, 47 (07) : 2604 - 2616
  • [35] Centers of Path Algebras, Cohn and Leavitt Path Algebras
    María G. Corrales García
    Dolores Martín Barquero
    Cándido Martín González
    Mercedes Siles Molina
    José F. Solanilla Hernández
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40 : 1745 - 1767
  • [36] The dynamics of Leavitt path algebras
    Hazrat, R.
    [J]. JOURNAL OF ALGEBRA, 2013, 384 : 242 - 266
  • [37] Centers of Path Algebras, Cohn and Leavitt Path Algebras
    Corrales Garcia, Maria G.
    Martin Barquero, Dolores
    Martin Gonzalez, Candido
    Siles Molina, Mercedes
    Solanilla Hernandez, Jose F.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (04) : 1745 - 1767
  • [38] Commutator Leavitt Path Algebras
    Mesyan, Zachary
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2013, 16 (05) : 1207 - 1232
  • [39] Leavitt Path Algebras Preface
    Abrams, Gene
    Ara, Pere
    Siles Molina, Mercedes
    [J]. LEAVITT PATH ALGEBRAS, 2017, 2191 : VII - +
  • [40] PURELY INFINITE CORONA ALGEBRAS OF SIMPLE C*-ALGEBRAS WITH REAL RANK ZERO
    Kucerovsky, Dan
    Perera, Francesc
    [J]. JOURNAL OF OPERATOR THEORY, 2011, 65 (01) : 131 - 144