Purely Infinite Simple Ultragraph Leavitt Path Algebras

被引:0
|
作者
T. G. Nam
N. D. Nam
机构
[1] Institute of Mathematics,Faculty of Pedagogy
[2] VAST,undefined
[3] Ha Tinh University,undefined
来源
关键词
Ultragraph Leavitt path algebras; purely infinite simplicity; graded simplicity; von Neumann regularity; 16S88; 16S99; 05C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we give necessary and sufficient conditions under which the Leavitt path algebra LK(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_K(\mathcal {G})$$\end{document} of an ultragraph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document} over a field K is purely infinite simple and that it is von Neumann regular. Consequently, we obtain that every graded simple ultragraph Leavitt path algebra is either a locally matricial algebra, or a full matrix ring over K[x,x-1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K[x, x^{-1}]$$\end{document}, or a purely infinite simple algebra.
引用
收藏
相关论文
共 50 条
  • [1] Purely Infinite Simple Ultragraph Leavitt Path Algebras
    Nam, T. G.
    Nam, N. D.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
  • [2] Purely infinite simple Leavitt path algebras
    Abrams, Gene
    Pino, Gonzalo Aranda
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2006, 207 (03) : 553 - 563
  • [3] The matrix type of purely infinite simple Leavitt path algebras
    G. Abrams
    C. Smith
    [J]. Acta Mathematica Hungarica, 2010, 128 : 381 - 385
  • [4] The matrix type of purely infinite simple Leavitt path algebras
    Abrams, G.
    Smith, C.
    [J]. ACTA MATHEMATICA HUNGARICA, 2010, 128 (04) : 381 - 385
  • [5] On the Ideals of Ultragraph Leavitt Path Algebras
    T. T. H. Duyen
    D. Gonçalves
    T. G. Nam
    [J]. Algebras and Representation Theory, 2024, 27 : 77 - 113
  • [6] On the Ideals of Ultragraph Leavitt Path Algebras
    Duyen, T. T. H.
    Goncalves, D.
    Nam, T. G.
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2024, 27 (01) : 77 - 113
  • [7] Realizing ultragraph Leavitt path algebras as Steinberg algebras
    Hazrat, R.
    Nam, T. G.
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2023, 227 (05)
  • [8] Irreducible and permutative representations of ultragraph Leavitt path algebras
    Goncalves, Daniel
    Royer, Danilo
    [J]. FORUM MATHEMATICUM, 2020, 32 (02) : 417 - 431
  • [9] Characterizing Rickart and Baer ultragraph Leavitt path algebras
    Jubeir, Mitchell
    van Wyk, Daniel W.
    [J]. JOURNAL OF ALGEBRA, 2024, 643 : 153 - 174
  • [10] Representations and the reduction theorem for ultragraph Leavitt path algebras
    Daniel Gonçalves
    Danilo Royer
    [J]. Journal of Algebraic Combinatorics, 2021, 53 : 505 - 526