Density deconvolution under a k-monotonicity constraint

被引:0
|
作者
Chew-Seng Chee
Byungtae Seo
机构
[1] Universiti Malaysia Terengganu,Faculty of Ocean Engineering Technology and Informatics
[2] Sungkyunkwan University,Department of Statistics
来源
Statistics and Computing | 2022年 / 32卷
关键词
Density deconvolution; -monotone density; Measurement error model; Nonparametric maximum likelihood estimator;
D O I
暂无
中图分类号
学科分类号
摘要
Maximum likelihood estimation of a k-monotone density which can be represented as a scale mixture of beta densities with parameters 1 and k is well-studied when no measurement error is present. In this paper, we further study the maximum likelihood method of density deconvolution under a k-monotonicity constraint. Using the mixture representation of a k-monotone density straightforwardly is prevented due to the likelihood unboundedness problem. To counter the problem, a reparameterization trick is applied by creating a scalar tuning parameter. When the tuning parameter is known, we establish the identifiability of the reparameterized mixture model for the observed data and the consistency of the maximum likelihood estimator of a k-monotone density in the presence of measurement error. We also provide a method to choose the tuning parameter. Numerical studies are used to illustrate the proposed estimation and selection procedure.
引用
收藏
相关论文
共 50 条
  • [41] IMPROVEMENT OF MEM-DECONVOLUTION BY AN ADDITIONAL CONSTRAINT
    REITER, J
    PFLEIDERER, J
    [J]. ASTRONOMY & ASTROPHYSICS, 1986, 166 (1-2) : 381 - 392
  • [42] ShapeNet: Shape constraint for galaxy image deconvolution
    Nammour, F.
    Akhaury, U.
    Girard, J. N.
    Lanusse, F.
    Sureau, F.
    Ben Ali, C.
    Starck, J. -L.
    [J]. ASTRONOMY & ASTROPHYSICS, 2022, 663
  • [43] Weakly k-submodular Maximization Under Matroid Constraint
    Wang, Yijing
    Zhang, Dongmei
    Zhang, Yapu
    Zhang, Zhenning
    [J]. THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2022, 2022, 13571 : 393 - 401
  • [44] Asymptotic normality of the deconvolution kernel density estimator under the vanishing error variance
    Bert van Es
    Shota Gugushvili
    [J]. Journal of the Korean Statistical Society, 2010, 39 : 103 - 115
  • [45] Asymptotic normality of the deconvolution kernel density estimator under the vanishing error variance
    van Es, Bert
    Gugushvili, Shota
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2010, 39 (01) : 103 - 115
  • [46] SMLR-Type Blind Deconvolution of Sparse Pulse Sequences Under a Minimum Temporal Distance Constraint
    Kail, Georg
    Hlawatsch, Franz
    Novak, Clemens
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (18) : 4838 - 4853
  • [47] Hull Consistency under Monotonicity
    Chabert, Gilles
    Jaulin, Luc
    [J]. PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING, 2009, 5732 : 188 - +
  • [48] Tossing Coins Under Monotonicity
    Neykov, Matey
    [J]. 22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89 : 21 - 29
  • [49] Bargaining under monotonicity constraints
    Herings, P. Jean-Jacques
    Predtetchinski, A.
    [J]. ECONOMIC THEORY, 2016, 62 (1-2) : 221 - 243
  • [50] MONOTONICITY OF EIGENVALUES UNDER SYMMETRIZATION
    ABRAMOVICH, S
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1975, 28 (02) : 350 - 361