Speeding up branch and bound algorithms for solving the maximum clique problem

被引:0
|
作者
Evgeny Maslov
Mikhail Batsyn
Panos M. Pardalos
机构
[1] National Research University Higher School of Economics,Laboratory of Algorithms and Technologies for Networks Analysis
[2] University of Florida,Center of Applied Optimization
来源
Journal of Global Optimization | 2014年 / 59卷
关键词
Maximum clique problem; Branch and bound algorithm ; Heuristic solution; Graph colouring; 05C69; 05C85; 90C27; 90C59; 90-08;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider two branch and bound algorithms for the maximum clique problem which demonstrate the best performance on DIMACS instances among the existing methods. These algorithms are MCS algorithm by Tomita et al. (2010) and MAXSAT algorithm by Li and Quan (2010a, b). We suggest a general approach which allows us to speed up considerably these branch and bound algorithms on hard instances. The idea is to apply a powerful heuristic for obtaining an initial solution of high quality. This solution is then used to prune branches in the main branch and bound algorithm. For this purpose we apply ILS heuristic by Andrade et al. (J Heuristics 18(4):525–547, 2012). The best results are obtained for p_hat1000-3 instance and gen instances with up to 11,000 times speedup.
引用
收藏
页码:1 / 21
页数:20
相关论文
共 50 条
  • [31] A Simple and Faster Branch-and-Bound Algorithm for Finding a Maximum Clique
    Tomita, Etsuji
    Sutani, Yoichi
    Higashi, Takanori
    Takahashi, Shinya
    Wakatsuki, Mitsuo
    WALCOM: ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2010, 5942 : 191 - 203
  • [32] A Much Faster Branch-and-Bound Algorithm for Finding a Maximum Clique
    Tomita, Etsuji
    Yoshida, Kohei
    Hatta, Takuro
    Nagao, Atsuki
    Ito, Hiro
    Wakatsuki, Mitsuo
    FRONTIERS IN ALGORITHMICS, FAW 2016, 2016, 9711 : 215 - 226
  • [33] On the scalability of biocomputing algorithms: The case of the maximum clique problem
    Manrique, Daniel
    Rodriguez-Paton, Alfonso
    Sosik, Petr
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (51) : 7075 - 7086
  • [34] Simple and fast: Improving a branch-and-bound algorithm for maximum clique
    Fahle, T
    ALGORITHMS-ESA 2002, PROCEEDINGS, 2002, 2461 : 485 - 498
  • [35] BRANCH AND BOUND ALGORITHMS - KNAPSACK PROBLEM
    PARSONS, JA
    JOURNAL OF SYSTEMS MANAGEMENT, 1969, 20 (09): : 35 - 37
  • [36] The maximum clique enumeration problem: algorithms, applications, and implementations
    John D Eblen
    Charles A Phillips
    Gary L Rogers
    Michael A Langston
    BMC Bioinformatics, 13
  • [37] The maximum clique enumeration problem: algorithms, applications, and implementations
    Eblen, John D.
    Phillips, Charles A.
    Rogers, Gary L.
    Langston, Michael A.
    BMC BIOINFORMATICS, 2012, 13
  • [38] The Maximum Clique Enumeration Problem: Algorithms, Applications and Implementations
    Eblen, John D.
    Phillips, Charles A.
    Rogers, Gary L.
    Langston, Michael A.
    BIOINFORMATICS RESEARCH AND APPLICATIONS, 2011, 6674 : 306 - 319
  • [39] A Lagrangian Bound on the Clique Number and an Exact Algorithm for the Maximum Edge Weight Clique Problem
    Hosseinian, Seyedmohammadhossein
    Fontes, Dalila B. M. M.
    Butenko, Sergiy
    INFORMS JOURNAL ON COMPUTING, 2020, 32 (03) : 747 - 762
  • [40] Two decomposition algorithms for solving a minimum weight maximum clique model for the air conflict resolution problem
    Lehouillier, Thibault
    Omer, Jeremy
    Soumis, Francois
    Desaulniers, Guy
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 256 (03) : 696 - 712