Partial Regularity of Strong Local Minimizers in the Multi-Dimensional Calculus of Variations

被引:0
|
作者
Jan Kristensen
Ali Taheri
机构
[1] Heriot-Watt University,School of Mathematical and Computer Sciences Scott Russell Building
[2] University of Warwick,Mathematics Institute
关键词
Growth Condition; Local Minimizer; Bounded Domain; Partial Regularity; Strong Local;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω⊂ℝn be a bounded domain and F:𝕄→ℝ a given strongly quasiconvex integrand of class C2 satisfying the growth condition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{ |F(\xi)| \le c (1 + |\xi|^p)}}$$\end{document} for some c>0 and 2≤p<∞. Consider the multiple integral \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{ I[u] = \int_{{\Omega}} \! F(\nabla u) }}$$\end{document} where uW1,p(Ω, ℝN). The main result of the paper is the proof that any strong local minimizer of I[·] is of class C1,αloc for any α(0,1) on an open set of full n-dimensional measure. In the case of weak local minimizers we establish the same result under the extra assumption that the oscillations in the gradient of the minimizer are not too large. Without such an assumption weak local minimizers need not be partially regular as we show by a class of examples. We also briefly discuss the question of existence of strong local minimizers for I[·] and connections of our results to extensions of Weierstrass’ sufficiency theorem to the multi-dimensional setting.
引用
下载
收藏
页码:63 / 89
页数:26
相关论文
共 50 条
  • [41] Direct approach to the problem of strong local minima in calculus of variations
    Yury Grabovsky
    Tadele Mengesha
    Calculus of Variations and Partial Differential Equations, 2008, 32 : 407 - 409
  • [42] Direct approach to the problem of strong local minima in calculus of variations
    Grabovsky, Yury
    Mengesha, Tadele
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 29 (01) : 59 - 83
  • [43] Direct approach to the problem of strong local minima in calculus of variations
    Yury Grabovsky
    Tadele Mengesha
    Calculus of Variations and Partial Differential Equations, 2007, 29 : 59 - 83
  • [44] Calculus of Variations. – Regularity improvement for the minimizers of the two-dimensional Griffith energy, by Camille Labourie and Antoine Lemenant, communicated on 10 November 2022
    Labourie C.
    Lemenant A.
    Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni, 2023, 34 : 337 - 357
  • [45] Multi-dimensional integration and limited variations.
    Bogel, K
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1935, 173 (1/4): : 5 - 30
  • [46] Learning From Multi-Dimensional Partial Labels
    Wang, Haobo
    Liu, Weiwei
    Zhao, Yang
    Hu, Tianlei
    Chen, Ke
    Chen, Gang
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2943 - 2949
  • [47] Collaborative Sampling for Partial Multi-Dimensional Value Collection Under Local Differential Privacy
    Qian, Qiuyu
    Ye, Qingqing
    Hu, Haibo
    Huang, Kai
    Chan, Tom Tak-Lam
    Li, Jin
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 3948 - 3961
  • [48] General Fractional Calculus in Multi-Dimensional Space: Riesz Form
    Tarasov, Vasily E.
    MATHEMATICS, 2023, 11 (07)
  • [49] A GENERAL-APPROACH TO THE EXISTENCE OF MINIMIZERS OF ONE-DIMENSIONAL NONCOERCIVE INTEGRALS OF THE CALCULUS OF VARIATIONS
    BOTTERON, B
    MARCELLINI, P
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1991, 8 (02): : 197 - 223
  • [50] σ2-Energy as a polyconvex functional on a space of self-maps of annuli in the multi-dimensional calculus of variations
    Shahrokhi-Dehkordi, M. S.
    Shaffaf, J.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (02): : 1 - 23