Energy-momentum conservation;
Diffeomorphism invariance;
Effective dark energy;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
For a large class of scalar-tensor-like gravity whose action contains nonminimal couplings between a scalar field ϕ(xα)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\phi (x^\alpha )$$\end{document} and generic curvature invariants R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\{ {\mathcal {R}}\right\} $$\end{document} beyond the Ricci scalar R=Rαα\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R=R^\alpha _{\;\;\alpha }$$\end{document}, we prove the covariant invariance of its field equation and confirm/prove the local energy-momentum conservation. These ϕ(xα)-R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\phi (x^\alpha )-{\mathcal {R}}$$\end{document} coupling terms break the symmetry of diffeomorphism invariance under an active transformation, which implies that the solutions to the field equation should satisfy the consistency condition R≡0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {R}}\equiv 0$$\end{document} when ϕ(xα)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\phi (x^\alpha )$$\end{document} is nondynamical and massless. Following this fact and based on the accelerated expansion of the observable Universe, we propose a primary test to check the viability of the modified gravity to be an effective dark energy, and a simplest example passing the test is the “Weyl/conformal dark energy”.
机构:
Seoul Natl Univ Sci & Technol, Sch Nat Sci, Coll Liberal Arts, Seoul 01811, South KoreaSeoul Natl Univ Sci & Technol, Sch Nat Sci, Coll Liberal Arts, Seoul 01811, South Korea
Cho, Inyong
Gong, Jinn-Ouk
论文数: 0引用数: 0
h-index: 0
机构:
Ewha Womans Univ, Dept Sci Educ, Seoul 03760, South Korea
Asia Pacific Ctr Theoret Phys, Pohang 37673, South KoreaSeoul Natl Univ Sci & Technol, Sch Nat Sci, Coll Liberal Arts, Seoul 01811, South Korea
Gong, Jinn-Ouk
Oh, Seung Hun
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Korea, Dept Consilience, Shihung 15073, South KoreaSeoul Natl Univ Sci & Technol, Sch Nat Sci, Coll Liberal Arts, Seoul 01811, South Korea
机构:
Univ Napoli Federico II, Dipartimento Fis E Pancini, Compl Univ Monte S Angelo, Edificio G,Via Cinthia, I-80126 Naples, Italy
INFN, INFN, Sez Napoli, Edificio G,Via Cinthia, I-80126 Naples, Italy
Scuola Super Meridionale, Largo S Marcellino 10, I-80138 Naples, ItalyUniv Napoli Federico II, Dipartimento Fis E Pancini, Compl Univ Monte S Angelo, Edificio G,Via Cinthia, I-80126 Naples, Italy
Capozziello, Salvatore
Capriolo, Maurizio
论文数: 0引用数: 0
h-index: 0
机构:
INFN, INFN, Sez Napoli, Edificio G,Via Cinthia, I-80126 Naples, Italy
Univ Salerno, Dipartimento Fis, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, ItalyUniv Napoli Federico II, Dipartimento Fis E Pancini, Compl Univ Monte S Angelo, Edificio G,Via Cinthia, I-80126 Naples, Italy
Capriolo, Maurizio
Lambiase, Gaetano
论文数: 0引用数: 0
h-index: 0
机构:
Univ Salerno, Dipartimento Fis, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
INFN, Sez Napoli, Grp Collegato Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, ItalyUniv Napoli Federico II, Dipartimento Fis E Pancini, Compl Univ Monte S Angelo, Edificio G,Via Cinthia, I-80126 Naples, Italy