Local energy-momentum conservation in scalar-tensor-like gravity with generic curvature invariants

被引:0
|
作者
David Wenjie Tian
机构
[1] Memorial University of Newfoundland,Faculty of Science
来源
关键词
Energy-momentum conservation; Diffeomorphism invariance; Effective dark energy;
D O I
暂无
中图分类号
学科分类号
摘要
For a large class of scalar-tensor-like gravity whose action contains nonminimal couplings between a scalar field ϕ(xα)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (x^\alpha )$$\end{document} and generic curvature invariants R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\mathcal {R}}\right\} $$\end{document} beyond the Ricci scalar R=Rαα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=R^\alpha _{\;\;\alpha }$$\end{document}, we prove the covariant invariance of its field equation and confirm/prove the local energy-momentum conservation. These ϕ(xα)-R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (x^\alpha )-{\mathcal {R}}$$\end{document} coupling terms break the symmetry of diffeomorphism invariance under an active transformation, which implies that the solutions to the field equation should satisfy the consistency condition R≡0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}\equiv 0$$\end{document} when ϕ(xα)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (x^\alpha )$$\end{document} is nondynamical and massless. Following this fact and based on the accelerated expansion of the observable Universe, we propose a primary test to check the viability of the modified gravity to be an effective dark energy, and a simplest example passing the test is the “Weyl/conformal dark energy”.
引用
收藏
相关论文
共 50 条
  • [1] Local energy-momentum conservation in scalar-tensor-like gravity with generic curvature invariants
    Tian, David Wenjie
    GENERAL RELATIVITY AND GRAVITATION, 2016, 48 (08)
  • [2] On the Energy-Momentum Tensor of the Scalar Field in Scalar–Tensor Theories of Gravity
    David I. Santiago
    Alexander S. Silbergleit
    General Relativity and Gravitation, 2000, 32 : 565 - 581
  • [3] On the energy-momentum tensor of the scalar field in Scalar-Tensor theories of gravity
    Santiago, DI
    Silbergleit, AS
    GENERAL RELATIVITY AND GRAVITATION, 2000, 32 (04) : 565 - 581
  • [4] ENERGY-MOMENTUM TENSOR IN SCALAR QED
    JOGLEKAR, SD
    MISRA, A
    PHYSICAL REVIEW D, 1988, 38 (08): : 2546 - 2558
  • [5] Sectional curvature and the energy-momentum tensor
    Hall, GS
    MacNay, L
    CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (09) : 1493 - 1502
  • [6] The f (R, Tφ) gravity models with conservation of energy-momentum tensor
    Singh, Vijay
    Beesham, Aroonkumar
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (07):
  • [7] ENERGY-MOMENTUM CONSERVATION IN GRAVITY THEORIES
    BAK, D
    CANGEMI, D
    JACKIW, R
    PHYSICAL REVIEW D, 1994, 49 (10): : 5173 - 5181
  • [8] THE ENERGY-MOMENTUM TENSOR ON THE LATTICE - THE SCALAR CASE
    CARACCIOLO, S
    CURCI, G
    MENOTTI, P
    PELISSETTO, A
    NUCLEAR PHYSICS B, 1988, 309 (04) : 612 - 624
  • [9] Energy-Momentum Tensor in the Relativistic Theory of Gravity
    Chugreev, Yu. V.
    PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2018, 15 (06) : 563 - 567
  • [10] On scalar and vector fields coupled to the energy-momentum tensor
    Beltran Jimenez, Jose
    Cembranos, Jose A. R.
    Sanchez Velazquez, Jose M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (05):