On the low-frequency variability of wintertime Euro-Atlantic planetary wave-breaking

被引:0
|
作者
Gabriele Messori
Paolo Davini
M. Carmen Alvarez-Castro
Francesco S. R. Pausata
Pascal Yiou
Rodrigo Caballero
机构
[1] Stockholm University,Department of Meteorology and Bolin Centre for Climate Research
[2] CEA-CNRS-UVSQ,Laboratoire des Sciences du Climat et de l’Environnement, UMR 8212
[3] IPSL,Laboratoire de Météorologie Dynamique/IPSL, École Normale Supérieure
[4] Université Paris Saclay,Département des Sciences de la Terre et de l’Atmosphère
[5] PSL Research University,undefined
[6] CNRS,undefined
[7] Istituto di Scienze dell’Atmosfera e del Clima,undefined
[8] ISAC-CNR,undefined
[9] Centro euroMediterraneo sui Cambiamenti Climatici,undefined
[10] CMCC Foundation,undefined
[11] Université du Québec à Montréal,undefined
来源
Climate Dynamics | 2019年 / 52卷
关键词
Planetary wave-breaking; Low-frequency variability; Windstorms; Millennium; North Atlantic; NAO;
D O I
暂无
中图分类号
学科分类号
摘要
Planetary wave-breaking can lead to large-scale atmospheric circulation anomalies and favour high-impact weather occurrences. For example, the simultaneous occurrence of anti-cyclonic wave-breaking to the south of the North Atlantic jet and cyclonic wave-breaking to the north, here termed double wave-breaking, has been linked to heightened frequencies of explosive cyclones in the Atlantic basin and destructive windstorms over Western and Continental Europe. The present study analyses the long-term temporal variability of wintertime cyclonic and anti-cyclonic wave-breaking, and the resulting double wave-breaking, in the North Atlantic. We use reanalysis data, proxy reconstructions of the North Atlantic Oscillation (NAO) and a 1000-year coupled global climate model equilibrium simulation under constant pre-industrial forcing. The wave-breaking wavelet spectra highlight a significant ultra-centennial variability in double wave-breaking frequency, which is largely mirrored in the variability of the NAO. However, we note that the NAO wavelet spectra in the different datasets display significant discrepancies. The low-frequency wave-breaking variability is reflected in long-term anomalies of the large-scale atmospheric circulation in the Euro-Atlantic sector. The 100-year periods with the most and least double wave-breaking occurrences display significant and opposite anomalies in both upper and lower-level wind, as well as in the frequency of extreme temperature events and in the magnitude of wind destructiveness over Europe. The latter broadly resembles the wind destructiveness anomalies associated with individual double wave-breaking instances in reanalysis data. The existence of low-frequency variability in an atmospheric pattern related to high-impact weather events has important implications for the study and interpretation of climate change projections and of possible future NAO changes.
引用
收藏
页码:2431 / 2450
页数:19
相关论文
共 50 条