Existence and characterization theorems in nonconvex vector optimization

被引:0
|
作者
Nergiz Kasimbeyli
机构
[1] Anadolu University,Department of Industrial Engineering, Faculty of Engineering
来源
关键词
Vector optimization; Nonlinear separation theorem; Augmented dual cone; Sublinear scalarizing functions; Conic scalarization method; Proper efficiency; Existence theorem;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents existence conditions and characterization theorems for minimal points of nonconvex vector optimization problems in reflexive Banach spaces. Characterization theorems use special class of monotonically increasing sublinear scalarizing functions which are defined by means of elements of augmented dual cones. It is shown that the Hartley cone-compactness is necessary and sufficient to guarantee the existence of a properly minimal point of the problem. The necessity is proven in the case of finite dimensional space.
引用
下载
收藏
页码:155 / 165
页数:10
相关论文
共 50 条
  • [31] Existence of a Saddle Point in Nonconvex Constrained Optimization
    D. Li
    X. L. Sun
    Journal of Global Optimization, 2001, 21 : 39 - 50
  • [32] A Note on the Existence of Nonsmooth Nonconvex Optimization Problems
    Kazufumi Ito
    Karl Kunisch
    Journal of Optimization Theory and Applications, 2014, 163 : 697 - 706
  • [33] PROPER EFFICIENCY FOR NONCONVEX VECTOR OPTIMIZATION PROBLEM
    Li, Genghua
    Li, Shengjie
    You, Manxue
    Chen, Chunrong
    PACIFIC JOURNAL OF OPTIMIZATION, 2019, 15 (04): : 505 - 517
  • [34] PROPER EFFICIENCY OF NONCONVEX VECTOR OPTIMIZATION PROBLEMS
    RONG Weidong (Department oI Mothematics
    Journal of Systems Science & Complexity, 1998, (01) : 18 - 25
  • [35] ON RECENT EXISTENCE THEOREMS IN THE THEORY OF OPTIMIZATION
    CESARI, L
    SURYANARAYANA, MB
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1980, 31 (03) : 397 - 415
  • [36] EXISTENCE THEOREMS FOR PARETO OPTIMIZATION PROBLEMS
    CESARI, L
    SURYANARAYANA, MB
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (06): : A663 - A663
  • [37] WEAK CONJUGATE DUALITY FOR NONCONVEX VECTOR OPTIMIZATION
    Kucuk, Yalgin
    Guvenc, Ilknur Atasever
    Kucuk, Mahide
    PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (01): : 75 - 103
  • [38] Existence theorems for set optimization problems
    Hernandez, Elvira
    Rodriguez-Marin, Luis
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (06) : 1726 - 1736
  • [40] Existence and sensitivity analysis for nonconvex cubic optimization problems
    Nguyen Nang Tam
    Tran Van Nghi
    OPTIMIZATION, 2022, 71 (07) : 1883 - 1906