Self-Calibration of Stationary Cameras

被引:1
|
作者
Richard I. Hartley
机构
[1] G.E. CRD,
来源
International Journal of Computer Vision | 1997年 / 22卷
关键词
self-calibration; projective transformation; camera matrix;
D O I
暂无
中图分类号
学科分类号
摘要
A new practical method is given for the self-calibration of a camera. In this method, at least three images are taken from the same point in space with different orientations of the camera and calibration is computed from an analysis of point matches between the images. The method requires no knowledge of the orientations of the camera. Calibration is based on the image correspondences only. This method differs fundamentally from previous results by Maybank and Faugeras on self-calibration using the epipolar structure of image pairs. In the method of this paper, there is no epipolar structure since all images are taken from the same point in space, and so Maybank and Faugeras's method does not apply. Since the images are all taken from the same point in space, determination of point matches is considerably easier than for images taken with a moving camera, since problems of occlusion or change of aspect or illumination do not occur.
引用
收藏
页码:5 / 23
页数:18
相关论文
共 50 条
  • [31] Adaptive Self-Calibration of Fisheye and Wide-Angle Cameras
    Kakani, Vijay
    Kim, Hakil
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 976 - 981
  • [32] Generic Self-calibration of Central Cameras from Two Rotational Flows
    Ferran Espuny
    José I. Burgos Gil
    International Journal of Computer Vision, 2011, 91 : 131 - 145
  • [33] Self-calibration based on a circle of the cameras having the varying intrinsic parameters
    El Akkad, Nabil
    Saaidi, Abderrahim
    Satari, Khalid
    2012 INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS (ICMCS), 2012, : 161 - 166
  • [34] Algebraic derivation of the Kruppa equations and a new algorithm for self-calibration of cameras
    Xu, G
    Sugimoto, N
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1999, 16 (10) : 2419 - 2424
  • [35] Algebraic derivation of the Kruppa equations and a new algorithm for self-calibration of cameras
    Computer Vision Laboratory, Department of Computer Science, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
    J Opt Soc Am A, 10 (2419-2424):
  • [36] Self-calibration method of the parameters of digital cameras based on panoramic images
    Zhou, D.X.
    Cai, X.P.
    Sun, M.Y.
    Jisuanji Gongcheng/Computer Engineering, 2001, 27 (04):
  • [37] Spherical-Projection-Model-Based Self-Calibration of Rotation Cameras
    Li Baoquan
    Fang Yongchun
    Zhang Xuebo
    Liu Kaizheng
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 4991 - 4996
  • [38] Generic Self-calibration of Central Cameras from Two Rotational Flows
    Espuny, Ferran
    Gil, Jose I. Burgos
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2011, 91 (02) : 131 - 145
  • [39] The detrimental effect of increasing the number of cameras on self-calibration for tomographic PIV
    Discetti, Stefano
    Astarita, Tommaso
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2014, 25 (08)
  • [40] A Self-calibration of a stationary camera in the case of variable intrinsic parameters
    El Maghraoui, Mounir
    EL Batteoui, Ismail
    Saaidi, Abderahim
    Satori, Khalid
    2020 SEVENTH INTERNATIONAL CONFERENCE ON SOCIAL NETWORK ANALYSIS, MANAGEMENT AND SECURITY (SNAMS), 2020, : 69 - 76