On an additive problem of unlike powers in short intervals

被引:0
|
作者
Qingqing Zhang
机构
[1] Shandong University,School of Mathematics
来源
关键词
Waring-Goldbach problem; exponential sum over prime in short interval; circle method; 11P32; 11P05; 11P55;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that almost all positive even integers n can be represented as p22 + p33 + p44 + p55 with |pkk−14N|⩽N1−1/54+ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| {p_k^k - {1 \over 4}N} \right| \leqslant {N^{1 - 1/54 + \varepsilon }}$$\end{document} for 2 ⩽ k ⩽ 5. As a consequence, we show that each sufficiently large odd integer N can be written as p1 + p22 + p33 + p44 + p55 with |pkk−15N|⩽N1−1/54+ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| {p_k^k - {1 \over 5}N} \right| \leqslant {N^{1 - 1/54 + \varepsilon }}$$\end{document} for 1 ⩽ k ⩽ 5.
引用
收藏
页码:1167 / 1174
页数:7
相关论文
共 50 条
  • [41] Distribution of values of additive functions on short intervals
    N. V. Taranenko
    Ukrainian Mathematical Journal, 2000, 52 (2) : 294 - 304
  • [42] On pairs of equations in unlike powers of primes and powers of 2
    Hu, Liqun
    Yang, Li
    OPEN MATHEMATICS, 2017, 15 : 1487 - 1494
  • [43] A pair of equations in unlike powers of primes and powers of 2
    Cai, Yong
    Hu, Liqun
    OPEN MATHEMATICS, 2020, 18 : 662 - 670
  • [44] On sums of integrals of powers of the zeta-function in short intervals
    Ivic, Aleksandar
    MULTIPLE DIRICHLET SERIES, AUTOMORPHIC FORMS, AND ANALYTIC NUMBER THEORY, 2006, 75 : 231 - 242
  • [45] Renyi's problem in short intervals
    Zhai, Wen Guang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (01) : 29 - 36
  • [46] On the Dirichlet divisor problem in short intervals
    Aleksandar Ivić
    Wenguang Zhai
    The Ramanujan Journal, 2014, 33 : 447 - 465
  • [47] Powers of Rational Numbers Modulo 1 Lying in Short Intervals
    Artūras Dubickas
    Results in Mathematics, 2010, 57 : 23 - 31
  • [48] Short intervals asymptotic formulae for binary problems with prime powers
    Languasco, Alessandro
    Zaccagnini, Alessandro
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2018, 30 (02): : 609 - 635
  • [49] Powers of Rational Numbers Modulo 1 Lying in Short Intervals
    Dubickas, Arturas
    RESULTS IN MATHEMATICS, 2010, 57 (1-2) : 23 - 31
  • [50] On the Dirichlet divisor problem in short intervals
    Ivic, Aleksandar
    Zhai, Wenguang
    RAMANUJAN JOURNAL, 2014, 33 (03): : 447 - 465