An optimal online algorithm for the parallel-batch scheduling with job processing time compatibilities

被引:0
|
作者
Ruyan Fu
Ji Tian
Shisheng Li
Jinjiang Yuan
机构
[1] China University of Mining and Technology,School of Mathematics
[2] Zhongyuan University of Technology,Department of Information and Computation Science
[3] Zhengzhou University,School of Mathematics and Statistics
来源
关键词
Online scheduling; Batch machine; Compatibility; Competitive ratio;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the online (over time) scheduling on a single unbounded parallel-batch machine with job processing time compatibilities to minimize makespan. In the problem, a constant α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document} is given in advance. Each job Jj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{j}$$\end{document} has a normal processing time pj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_j$$\end{document}. Two jobs Ji\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_i$$\end{document} and Jj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_j$$\end{document} are compatible if max{pi,pj}≤(1+α)·min{pi,pj}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \{p_i, p_j\} \le (1+\alpha )\cdot \min \{p_i, p_j\}$$\end{document}. In the problem, mutually compatible jobs can form a batch being processed on the machine. The processing time of a batch is equal to the maximum normal processing time of the jobs in this batch. For this problem, we provide an optimal online algorithm with a competitive ratio of 1+βα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+\beta _\alpha $$\end{document}, where βα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _\alpha $$\end{document} is the positive root of the equation (1+α)x2+αx=1+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\alpha )x^{2}+\alpha x=1+\alpha $$\end{document}.
引用
收藏
页码:1187 / 1197
页数:10
相关论文
共 50 条
  • [1] An optimal online algorithm for the parallel-batch scheduling with job processing time compatibilities
    Fu, Ruyan
    Tian, Ji
    Li, Shisheng
    Yuan, Jinjiang
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (04) : 1187 - 1197
  • [2] A Best Possible Online Algorithm For Parallel-Batch Scheduling with Kind Release Times and Job Compatibilities
    Miao, Li-Yun
    Tian, Ji
    Fu, Ru-Yan
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2023,
  • [3] An optimal online algorithm for single parallel-batch machine scheduling with incompatible job families to minimize makespan
    Fu, Ruyan
    Cheng, T. C. E.
    Ng, C. T.
    Yuan, Jinjiang
    [J]. OPERATIONS RESEARCH LETTERS, 2013, 41 (03) : 216 - 219
  • [4] Online scheduling on unbounded parallel-batch machines with incompatible job families
    Tian, Ji
    Cheng, T. C. E.
    Ng, C. T.
    Yuan, Jinjiang
    [J]. THEORETICAL COMPUTER SCIENCE, 2011, 412 (22) : 2380 - 2386
  • [5] Online Over Time Scheduling on Parallel-Batch Machines: A Survey
    Tian J.
    Fu R.
    Yuan J.
    [J]. Journal of the Operations Research Society of China, 2014, 2 (4) : 445 - 454
  • [6] Online scheduling on parallel-batch machines with periodic availability constraints and job delivery
    Lin, Ran
    Wang, Jun-Qiang
    Oulamara, Ammar
    [J]. OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2023, 116
  • [7] A Parallel-batch Multi-objective Job Scheduling Algorithm in Edge Computing
    Zhao, Xingguang
    Guo, Xing
    Zhang, Yiwen
    Li, Wei
    [J]. IEEE 2018 INTERNATIONAL CONGRESS ON CYBERMATICS / 2018 IEEE CONFERENCES ON INTERNET OF THINGS, GREEN COMPUTING AND COMMUNICATIONS, CYBER, PHYSICAL AND SOCIAL COMPUTING, SMART DATA, BLOCKCHAIN, COMPUTER AND INFORMATION TECHNOLOGY, 2018, : 510 - 516
  • [8] A best online algorithm for unbounded parallel-batch scheduling with restarts to minimize makespan
    Jinjiang Yuan
    Ruyan Fu
    C. T. Ng
    T. C. E. Cheng
    [J]. Journal of Scheduling, 2011, 14 : 361 - 369
  • [9] A best online algorithm for unbounded parallel-batch scheduling with restarts to minimize makespan
    Yuan, Jinjiang
    Fu, Ruyan
    Ng, C. T.
    Cheng, T. C. E.
    [J]. JOURNAL OF SCHEDULING, 2011, 14 (04) : 361 - 369
  • [10] Online Parallel-Batch Scheduling of Learning Effect Jobs with Incompatible Job Families for Prefabricated Components
    Li, Na
    Ma, Ran
    [J]. PARALLEL PROCESSING LETTERS, 2023, 33 (01N02)