Direct Numerical Simulation in a Lid-Driven Cubical Cavity at High Reynolds Number by a Chebyshev Spectral Method

被引:2
|
作者
Emmanuel Leriche
机构
[1] Ecole Polytechnique Fédérale de Lausanne,Laboratoire d’Ingénierie Numérique, Institut des Sciences de l’Energie, Section de Génie Mécanique, Faculté des Sciences et Techniques de l’Ingénieur
来源
Journal of Scientific Computing | 2006年 / 27卷
关键词
Chebyshev spectral method; direct numerical simulation; 3D lid-driven cavity;
D O I
暂无
中图分类号
学科分类号
摘要
Direct numerical simulation of the flow in a lid-driven cubical cavity has been carried out at high Reynolds numbers (based on the maximum velocity on the lid), between 1.2 104 and 2.2 104. An efficient Chebyshev spectral method has been implemented for the solution of the incompressible Navier–Stokes equations in a cubical domain. The Projection-Diffusion method [Leriche and Labrosse (2000, SIAM J. Sci. Comput. 22(4), 1386–1410), Leriche et al. (2005, J. Sci. Comput., in press)] allows to decouple the velocity and pressure computation in very efficient way and the simple geometry allows to use the fast diagonalisation method for inverting the elliptic operators at a low computational cost. The resolution used up to 5.0 million Chebyshev collocation nodes, which enable the detailed representation of all dynamically significant scales of motion. The mean and root-mean-square velocity statistics are briefly presented
引用
收藏
页码:335 / 345
页数:10
相关论文
共 50 条
  • [41] Numerical simulation of 2D lid-driven cavity flow with CLEARER algorithm on extremely highly skewed grids at high Reynolds numbers
    Cheng, Y. P.
    Lee, T. S.
    Sui, Y.
    Wang, L. P.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (10) : 1201 - 1216
  • [42] Lattice Boltzmann simulation of nanofluid in lid-driven cavity
    Nemati, H.
    Farhadi, M.
    Sedighi, K.
    Fattahi, E.
    Darzi, A. A. R.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2010, 37 (10) : 1528 - 1534
  • [43] Simulating high Reynolds number flow in two-dimensional lid-driven cavity by multi-relaxation-time lattice Boltzmann method
    Chai Zhen-Hua
    Shi Bao-Chang
    Zheng Lin
    CHINESE PHYSICS, 2006, 15 (08): : 1855 - 1863
  • [44] Mixing Analysis in a Lid-Driven Cavity Flow at Finite Reynolds Numbers
    Rao, Pradeep
    Duggleby, Andrew
    Stremler, Mark A.
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2012, 134 (04):
  • [45] Digital physics simulation of lid-driven cavity flow
    Teixeira, CM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1997, 8 (04): : 685 - 696
  • [46] A novel fully implicit finite volume method applied to the lid-driven cavity problem - Part I: High Reynolds number flow calculations
    Sahin, M
    Owens, RG
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2003, 42 (01) : 57 - 77
  • [47] Chaotic Lid-Driven Square Cavity Flows at Extreme Reynolds Numbers
    Garcia, Salvador
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2014, 15 (03) : 596 - 617
  • [48] Three-Dimensional Flow Problems in a Lid-Driven Cubical Cavity with a Circular Cylinder
    Hammami, Faycel
    Souayeh, Basma
    Ben-Beya, Brahim
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2017, 18 (3-4) : 187 - 196
  • [49] IMMERSED BOUNDARY METHOD FOR THE SIMULATION OF LID-DRIVEN CAVITY FLOW WITH AN EMBEDDED CYLINDER
    Cai, Shang-Gui
    Ouahsine, Abdellatif
    Favier, Julien
    Hoarau, Yannick
    Smaoui, Hassan
    Coupled Problems in Science and Engineering VI, 2015, : 1130 - 1137
  • [50] Global Stability and Transition to Intermittent Chaos in the Cubical Lid-Driven Cavity Flow Problem
    Loiseau, J. -Ch.
    Robinet, J. -Ch.
    ADVANCES IN COMPUTATION, MODELING AND CONTROL OF TRANSITIONAL AND TURBULENT FLOWS, 2016, : 94 - 102