Boundary-Mapping Parametrization in Isogeometric Analysis

被引:5
|
作者
Deng F. [1 ]
Zeng C. [1 ]
Deng J. [1 ]
机构
[1] School of Mathematical Sciences, University of Science and Technology of China, Hefei
基金
中国国家自然科学基金;
关键词
Finite element analysis; Isogeometric analysis; Parametrization; PHT-splines;
D O I
10.1007/s40304-015-0082-x
中图分类号
学科分类号
摘要
In isogeometric analysis (IGA), parametrization is an important and difficult issue that greatly influences the numerical accuracy and efficiency of the numerical solution. One of the problems facing the parametrization in IGA is the existence of the singular points in the parametrization domain. To avoid producing singular points, boundary-mapping parametrization is given by mapping the computational domain to a polygon domain which may not be a square domain and mapping each segment of the boundary in computational domain to a corresponding boundary edge of the polygon. Two numerical examples in finite element analysis are presented to show the novel parametrization is efficient. © 2016, School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:203 / 216
页数:13
相关论文
共 50 条
  • [31] Interpolating Isogeometric Boundary Node Method and Isogeometric Boundary Element Method Based on Parameter Space
    Yang, Hongyin
    Zhong, Jiwei
    Wang, Ying
    Chen, Xingquan
    Bian, Xiaoya
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2020, 124 (03): : 807 - 824
  • [32] Data-driven optimization approach for mass-spring models parametrization based on isogeometric analysis
    da Silva, Josildo Pereira
    Giraldi, Gilson A.
    Apolinario, Antonio L., Jr.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2017, 23 : 1 - 19
  • [33] Parallel isogeometric boundary element analysis with T-splines on CUDA
    Peres, M. A.
    Sanches, G.
    Paiva, A.
    Pagliosa, P.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 432
  • [34] BOUNDARY PARAMETRIZATION AND THE TOPOLOGY OF TILES
    Akiyama, Shigeki
    Loridant, Benoit
    NAGOYA MATHEMATICAL JOURNAL, 2017, 226 : 127 - 164
  • [35] Isogeometric-based mapping modeling and buckling analysis of stiffened panels
    Wang, Yu
    Jin, Lingzhi
    Yang, Hang
    Hao, Peng
    Ji, Ye
    Wang, Bo
    THIN-WALLED STRUCTURES, 2023, 186
  • [36] A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis
    Simpson, R. N.
    Bordas, S. P. A.
    Trevelyan, J.
    Rabczuk, T.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 209 : 87 - 100
  • [37] An isogeometric scaled boundary plate formulation for the analysis of ionic electroactive paper
    Markus Klassen
    Sven Klinkel
    Acta Mechanica, 2023, 234 : 207 - 219
  • [38] Isogeometric hyperelastic shell analysis with out-of-plane deformation mapping
    Kenji Takizawa
    Tayfun E. Tezduyar
    Takafumi Sasaki
    Computational Mechanics, 2019, 63 : 681 - 700
  • [39] Stress analysis without meshing: isogeometric boundary-element method
    Lian, Haojie
    Simpson, Robert N.
    Bordas, Stephane P. A.
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-ENGINEERING AND COMPUTATIONAL MECHANICS, 2013, 166 (02) : 88 - 99
  • [40] Geometrically nonlinear analysis of solids using an isogeometric formulation in boundary representation
    Margarita Chasapi
    Sven Klinkel
    Computational Mechanics, 2020, 65 : 355 - 373