Embedded Feature Selection for Multi-label Classification of Music Emotions

被引:0
|
作者
Mingyu You
Jiaming Liu
Guo-Zheng Li
Yan Chen
机构
[1] Tongji University,The MOE Key Laboratory of Embedded System and Service Computing, Department of Control Science and Engineering
关键词
Embedded feature selection; Multi-label learning; Music emotion;
D O I
暂无
中图分类号
学科分类号
摘要
When detecting of emotions from music, many features are extracted from the original music data. However, there are redundant or irrelevant features, which will reduce the performance of classification models. Considering the feature problems, we propose an embedded feature selection method, called Multi-label Embedded Feature Selection (MEFS), to improve classification performance by selecting features. MEFS embeds classifier and considers the label correlation. Other three representative multi-label feature selection methods, known as LP-Chi, max and avg, together with four multi-label classification algorithms, is included for performance comparison. Experimental results show that the performance of our MEFS algorithm is superior to those filter methods in the music emotion dataset.
引用
收藏
页码:668 / 678
页数:10
相关论文
共 50 条
  • [31] ReliefF for Multi-label Feature Selection
    Spolaor, Newton
    Cherman, Everton Alvares
    Monard, Maria Carolina
    Lee, Huei Diana
    2013 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2013, : 6 - 11
  • [32] Partial Multi-Label Feature Selection
    Wang, Jing
    Li, Peipei
    Yu, Kui
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [33] Multi-Label Causal Feature Selection
    Wu, Xingyu
    Jiang, Bingbing
    Yu, Kui
    Chen, Huanhuan
    Miao, Chunyan
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6430 - 6437
  • [34] Integration of deep learning model and feature selection for multi-label classification
    Ebrahimi, Hossein
    Majidzadeh, Kambiz
    Gharehchopogh, Farhad Soleimanian
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 2871 - 2883
  • [35] Low-rank learning for feature selection in multi-label classification
    Lim, Hyunki
    PATTERN RECOGNITION LETTERS, 2023, 172 : 106 - 112
  • [36] Feature selection for multi-label classification using multivariate mutual information
    Lee, Jaesung
    Kim, Dae-Won
    PATTERN RECOGNITION LETTERS, 2013, 34 (03) : 349 - 357
  • [37] TOPSIS-ACO based feature selection for multi-label classification
    Verma G.
    Sahu T.P.
    International Journal of Computers and Applications, 2024, 46 (06) : 363 - 380
  • [38] Feature selection for multi-label classification based on neighborhood rough sets
    Duan, Jie
    Hu, Qinghua
    Zhang, Lingjun
    Qian, Yuhua
    Li, Deyu
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2015, 52 (01): : 56 - 65
  • [39] Partial Classifier Chains with Feature Selection by Exploiting Label Correlation in Multi-Label Classification
    Wang, Zhenwu
    Wang, Tielin
    Wan, Benting
    Han, Mengjie
    ENTROPY, 2020, 22 (10) : 1 - 22
  • [40] Feature selection for multi-label learning with streaming label
    Liu, Jinghua
    Li, Yuwen
    Weng, Wei
    Zhang, Jia
    Chen, Baihua
    Wu, Shunxiang
    NEUROCOMPUTING, 2020, 387 : 268 - 278