About Distances between Points on the Plane

被引:0
|
作者
S. V. Konyagin
机构
[1] M. V. Lomonosov Moscow State University,
来源
Mathematical Notes | 2001年 / 69卷
关键词
distance between points on the plane; Erdös conjecture; Sárközy theorem;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:578 / 581
页数:3
相关论文
共 50 条
  • [11] SUM OF DISTANCES BETWEEN POINTS ON A SPHERE
    ALEXANDER, R
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1972, 23 (3-4): : 443 - 448
  • [12] Distinct distances between points and lines
    Sharir, Micha
    Smorodinsky, Shakhar
    Valculescu, Claudiu
    de Zeeuw, Frank
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2018, 69 : 2 - 15
  • [13] Extended distances between fuzzy points
    Casasnovas, J.
    Riera, J. Vicente
    NEW DIMENSIONS IN FUZZY LOGIC AND RELATED TECHNOLOGIES, VOL II, PROCEEDINGS, 2007, : 163 - 168
  • [15] On the Relative Distances of Nine Points in the Boundary of a Plane Convex Body
    Liu, Cen
    Su, Zhanjun
    RESULTS IN MATHEMATICS, 2021, 76 (02)
  • [16] On the Relative Distances of Nine Points in the Boundary of a Plane Convex Body
    Cen Liu
    Zhanjun Su
    Results in Mathematics, 2021, 76
  • [17] On the relative distances of eleven points in the boundary of a plane convex body
    Su, Zhanjun
    Wei, Xianglin
    Li, Sipeng
    Shen, Jian
    DISCRETE MATHEMATICS, 2014, 317 : 14 - 18
  • [18] THE NUMBER OF DIFFERENT DISTANCES DETERMINED BY A SET OF POINTS IN THE EUCLIDEAN PLANE
    CHUNG, FRK
    SZEMEREDI, E
    TROTTER, WT
    DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 7 (01) : 1 - 11
  • [19] AN INEQUALITY OF DISTANCES BETWEEN FINITE POINTS ON HYPERSPHERE
    ZHOU, JN
    CHINESE SCIENCE BULLETIN, 1989, 34 (18): : 1514 - 1518