Construction and search of balanced Boolean functions on even number of variables towards excellent autocorrelation profile

被引:0
|
作者
Selçuk Kavut
Subhamoy Maitra
Deng Tang
机构
[1] Balıkesir University,Department of Computer Engineering
[2] Indian Statistical Institute,Applied Statistics Unit
[3] Southwest Jiaotong University,School of Mathematics
来源
关键词
Absolute Indicator; Autocorrelation Spectrum; Balancedness; Boolean Function; Nonlinearity; 06E30; 94A60; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
In a very recent work by Tang and Maitra (IEEE Ttans Inf Theory 64(1):393–402, 2018], a theoretical construction of balanced functions f on n-variables (n≡2mod4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\equiv 2 \bmod 4$$\end{document}) with very good autocorrelation and Walsh spectra values (Δf<2n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _f < 2^{\frac{n}{2}}$$\end{document} and nl(f)>2n-1-2n2+2n2-3-5·2n-24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$nl(f) > 2^{n-1} - 2^{\frac{n}{2}} + 2^{\frac{n}{2}-3} - 5\cdot 2^{\frac{n-2}{4}}$$\end{document}) has been presented. The theoretical bounds could be satisfied for all such n≥46\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 46$$\end{document}. The case for n≡0mod4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \equiv 0 \bmod 4$$\end{document} could not be solved in the said paper and it has also been pointed out that though theoretically not proved, such constructions may provide further interesting examples of Boolean functions. In this follow-up work, we concentrate in two directions. First we present a construction method for balanced functions f on n-variables (n≡0mod4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\equiv 0 \bmod 4$$\end{document} and n≥52\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 52$$\end{document}) with Δf<2n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _f < 2^{\frac{n}{2}}$$\end{document} and nl(f)>2n-1-2n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$nl(f) > 2^{n-1} - 2^{\frac{n}{2}}$$\end{document}). Secondly, we apply search methods in suitable places to obtain balanced functions on even variables in the interval [10,…,26]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[10, \ldots , 26]$$\end{document} with improved parameters that could never be achieved before. As a consequence, for the first time we could provide examples of balanced Boolean functions f having Δf<2n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _f < 2^{\frac{n}{2}}$$\end{document} for n≡0mod4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \equiv 0 \bmod 4$$\end{document}, where n=12,16,20,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 12, 16, 20,$$\end{document} and 24. Whatever functions we present in this paper have nonlinearity greater than 2n-1-2n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{n-1} - 2^{\frac{n}{2}}$$\end{document}.
引用
收藏
页码:261 / 276
页数:15
相关论文
共 50 条
  • [21] Further construction of even-variable balanced rotation symmetric Boolean functions with optimal algebraic immunity
    Zhao, Qinglan
    Li, Pan
    Zheng, Dong
    Li, Luyang
    Qin, Baodong
    THEORETICAL COMPUTER SCIENCE, 2024, 1012
  • [22] Construction of Rotation Symmetric Boolean Functions on odd number of variables with maximum algebraic immunity
    Sarkar, Sumanta
    Maitra, Subhamoy
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 2007, 4851 : 271 - +
  • [23] Construction and enumeration of balanced rotation symmetric Boolean functions
    Zeenath, A. U.
    Lakshmy, K., V
    Cusick, Thomas W.
    Sethumadhavan, M.
    DISCRETE APPLIED MATHEMATICS, 2024, 357 : 197 - 208
  • [24] A NEW CONSTRUCTION OF WEIGHTWISE PERFECTLY BALANCED BOOLEAN FUNCTIONS
    Zhang, Rui
    Su, Sihong
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2021, : 757 - 770
  • [25] A unified construction of weightwise perfectly balanced Boolean functions
    Zhao, Qinglan
    Li, Mengran
    Chen, Zhixiong
    Qin, Baodong
    Zheng, Dong
    DISCRETE APPLIED MATHEMATICS, 2023, 337 : 190 - 201
  • [26] On the construction of balanced Boolean functions with a good algebraic immunity
    Carlet, C
    Gaborit, P
    2005 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), VOLS 1 AND 2, 2005, : 1101 - 1105
  • [27] Counting balanced Boolean functions in n variables with bounded degree
    Cusick, Thomas W.
    Cheon, Younhwan
    EXPERIMENTAL MATHEMATICS, 2007, 16 (01) : 101 - 105
  • [28] The Number of Nonequivalent Monotone Boolean Functions of 8 Variables
    Caric, Marko
    Zivkovic, Miodrag
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (06) : 4027 - 4034
  • [29] On the Number of Inequivalent Monotone Boolean Functions of 9 Variables
    Pawelski, Bartlomiej
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (07) : 5358 - 5364
  • [30] Search for Boolean functions with excellent profiles in the rotation symmetric class
    Kavut, Selcuk
    Maitra, Subhamoy
    Yucel, Melek D.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (05) : 1743 - 1751