Construction and search of balanced Boolean functions on even number of variables towards excellent autocorrelation profile

被引:0
|
作者
Selçuk Kavut
Subhamoy Maitra
Deng Tang
机构
[1] Balıkesir University,Department of Computer Engineering
[2] Indian Statistical Institute,Applied Statistics Unit
[3] Southwest Jiaotong University,School of Mathematics
来源
关键词
Absolute Indicator; Autocorrelation Spectrum; Balancedness; Boolean Function; Nonlinearity; 06E30; 94A60; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
In a very recent work by Tang and Maitra (IEEE Ttans Inf Theory 64(1):393–402, 2018], a theoretical construction of balanced functions f on n-variables (n≡2mod4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\equiv 2 \bmod 4$$\end{document}) with very good autocorrelation and Walsh spectra values (Δf<2n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _f < 2^{\frac{n}{2}}$$\end{document} and nl(f)>2n-1-2n2+2n2-3-5·2n-24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$nl(f) > 2^{n-1} - 2^{\frac{n}{2}} + 2^{\frac{n}{2}-3} - 5\cdot 2^{\frac{n-2}{4}}$$\end{document}) has been presented. The theoretical bounds could be satisfied for all such n≥46\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 46$$\end{document}. The case for n≡0mod4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \equiv 0 \bmod 4$$\end{document} could not be solved in the said paper and it has also been pointed out that though theoretically not proved, such constructions may provide further interesting examples of Boolean functions. In this follow-up work, we concentrate in two directions. First we present a construction method for balanced functions f on n-variables (n≡0mod4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\equiv 0 \bmod 4$$\end{document} and n≥52\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 52$$\end{document}) with Δf<2n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _f < 2^{\frac{n}{2}}$$\end{document} and nl(f)>2n-1-2n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$nl(f) > 2^{n-1} - 2^{\frac{n}{2}}$$\end{document}). Secondly, we apply search methods in suitable places to obtain balanced functions on even variables in the interval [10,…,26]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[10, \ldots , 26]$$\end{document} with improved parameters that could never be achieved before. As a consequence, for the first time we could provide examples of balanced Boolean functions f having Δf<2n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _f < 2^{\frac{n}{2}}$$\end{document} for n≡0mod4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \equiv 0 \bmod 4$$\end{document}, where n=12,16,20,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 12, 16, 20,$$\end{document} and 24. Whatever functions we present in this paper have nonlinearity greater than 2n-1-2n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{n-1} - 2^{\frac{n}{2}}$$\end{document}.
引用
收藏
页码:261 / 276
页数:15
相关论文
共 50 条
  • [1] Construction and search of balanced Boolean functions on even number of variables towards excellent autocorrelation profile
    Kavut, Selcuk
    Maitra, Subhamoy
    Tang, Deng
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (2-3) : 261 - 276
  • [2] Construction of Semi-Bent Boolean Functions in Even Number of Variables
    Sun Guanghong
    Wu Chuankun
    CHINESE JOURNAL OF ELECTRONICS, 2009, 18 (02): : 231 - 237
  • [3] Construction of semi-bent Boolean functions in even number of variables
    State Key Laboratory of Information Security, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
    不详
    不详
    Chin J Electron, 2009, 2 (231-237):
  • [4] A construction method of balanced rotation symmetric Boolean functions on arbitrary even number of variables with optimal algebraic immunity
    Sihem Mesnager
    Sihong Su
    Hui Zhang
    Designs, Codes and Cryptography, 2021, 89 : 1 - 17
  • [5] A construction method of balanced rotation symmetric Boolean functions on arbitrary even number of variables with optimal algebraic immunity
    Mesnager, Sihem
    Su, Sihong
    Zhang, Hui
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (01) : 1 - 17
  • [6] Constructions of balanced Boolean functions on even number of variables with maximum absolute value in autocorrelation spectra &lt; 2n/2
    Zhang, Fengrong
    Pasalic, Enes
    Wei, Yongzhuang
    INFORMATION SCIENCES, 2021, 575 : 437 - 453
  • [7] Construction of weightwise almost perfectly balanced Boolean functions on an arbitrary number of variables
    Guo, Xiaoqi
    Su, Sihong
    DISCRETE APPLIED MATHEMATICS, 2022, 307 : 102 - 114
  • [8] EFFICIENT CALCULATION OF THE AUTOCORRELATION OF BOOLEAN FUNCTIONS WITH A LARGE NUMBER OF VARIABLES
    Radmanovic, Milos
    Stankovic, Radomir
    Moraga, Claudio
    FACTA UNIVERSITATIS-SERIES ELECTRONICS AND ENERGETICS, 2015, 28 (04) : 597 - 609
  • [9] Construction of balanced Boolean functions with high nonlinearity and good autocorrelation properties
    Tang, Deng
    Zhang, Weiguo
    Tang, Xiaohu
    DESIGNS CODES AND CRYPTOGRAPHY, 2013, 67 (01) : 77 - 91
  • [10] Construction of balanced Boolean functions with high nonlinearity and good autocorrelation properties
    Deng Tang
    Weiguo Zhang
    Xiaohu Tang
    Designs, Codes and Cryptography, 2013, 67 : 77 - 91