On-Chain and Off-Chain Data Management for Blockchain-Internet of Things: A Multi-Agent Deep Reinforcement Learning Approach

被引:0
|
作者
Y. P. Tsang
C. K. M. Lee
Kening Zhang
C. H. Wu
W. H. Ip
机构
[1] Research Institute for Advanced Manufacturing,Department of Industrial and Systems Engineering
[2] The Hong Kong Polytechnic University,Department of Supply Chain and Information Management
[3] The Hang Seng University of Hong Kong,Department of Mech. Engg.
[4] The University of Saskatchewan,undefined
来源
Journal of Grid Computing | 2024年 / 22卷
关键词
Blockchain; Internet of Things; Data management; Deep reinforcement learning; Asynchronous advantage actor-critic (A3C) algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
The emergence of blockchain technology has seen applications increasingly hybridise cloud storage and distributed ledger technology in the Internet of Things (IoT) and cyber-physical systems, complicating data management in decentralised applications (DApps). Because it is inefficient for blockchain technology to handle large amounts of data, effective on-chain and off-chain data management in peer-to-peer networks and cloud storage has drawn considerable attention. Space reservation is a cost-effective approach to managing cloud storage effectively, contrasting with the demand for additional space in real-time. Furthermore, off-chain data replication in the peer-to-peer network can eliminate single points of failure of DApps. However, recent research has rarely discussed optimising on-chain and off-chain data management in the blockchain-enabled IoT (BIoT) environment. In this study, the BIoT environment is modelled, with cloud storage and blockchain orchestrated over the peer-to-peer network. The asynchronous advantage actor-critic algorithm is applied to exploit intelligent agents with the optimal policy for data packing, space reservation, and data replication to achieve an intelligent data management strategy. The experimental analysis reveals that the proposed scheme demonstrates rapid convergence and superior performance in terms of average total reward compared with other typical schemes, resulting in enhanced scalability, security and reliability of blockchain-IoT networks, leading to an intelligent data management strategy.
引用
收藏
相关论文
共 50 条
  • [31] Multi-Agent Deep Reinforcement Learning Based Scheduling Approach for Mobile Charging in Internet of Electric Vehicles
    Liu, Linfeng
    Huang, Zhuo
    Xu, Jia
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (10) : 10130 - 10145
  • [32] Reliability deployment of service function chain based on multi-agent reinforcement learning
    Liu, Guangyuan
    Huang, Shucui
    Li, Kai
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 1574 - 1578
  • [33] A multi-agent deep reinforcement learning approach for traffic signal coordination
    Hu, Ta-Yin
    Li, Zhuo-Yu
    IET INTELLIGENT TRANSPORT SYSTEMS, 2024, 18 (08) : 1428 - 1444
  • [34] A deep reinforcement learning approach for multi-agent mobile robot patrolling
    Jana, Meghdeep
    Vachhani, Leena
    Sinha, Arpita
    INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS, 2022, 6 (04) : 724 - 745
  • [35] A deep reinforcement learning approach for multi-agent mobile robot patrolling
    Meghdeep Jana
    Leena Vachhani
    Arpita Sinha
    International Journal of Intelligent Robotics and Applications, 2022, 6 : 724 - 745
  • [36] Load Frequency Control: A Deep Multi-Agent Reinforcement Learning Approach
    Rozada, Sergio
    Apostolopoulou, Dimitra
    Alonso, Eduardo
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [37] An Incremental Approach for Multi-Agent Deep Reinforcement Learning for Multicriteria Missions
    Cysne, Nicholas Scharan
    Ribeiro, Carlos Henrique Costa
    Ghedini, Cinara Guellner
    2023 EUROPEAN CONTROL CONFERENCE, ECC, 2023,
  • [38] A Supply Chain Inventory Management Method for Civil Aircraft Manufacturing Based on Multi-Agent Reinforcement Learning
    Piao, Mingjie
    Zhang, Dongdong
    Lu, Hu
    Li, Rupeng
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [39] A Multiagent Deep Reinforcement Learning Autonomous Security Management Approach for Internet of Things
    Ren, Bin
    Tang, Yunlong
    Wang, Huan
    Wang, Yichuan
    Liu, Jianxiong
    Gao, Ge
    Wei, Wei
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (15): : 25600 - 25612
  • [40] GCN-Based Multi-Agent Deep Reinforcement Learning for Dynamic Service Function Chain Deployment in IoT
    Wang, Shuyi
    Cao, Haotong
    Yang, Longxiang
    Garg, Sahil
    Kaddoum, Georges
    Alrashoud, Mubarak
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (03) : 6105 - 6118