On the Alexander invariants of trigonal curves

被引:0
|
作者
Melih Üçer
机构
[1] Bilkent University,
[2] Ankara Yıldırım Beyazıt University,undefined
来源
关键词
Trigonal curve; Alexander invariant; Braid monodromy; Burau representation; Modular group; Dessin d’enfant; Primary: 14F35; Secondary: 14H50; 20F36; 14H30; 14H57;
D O I
暂无
中图分类号
学科分类号
摘要
We show that most of the genus-zero subgroups of the braid group B3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {B}_3$$\end{document} (which are roughly the braid monodromy groups of the trigonal curves on the Hirzebruch surfaces) are irrelevant as far as the Alexander invariant is concerned: there is a very restricted class of “primitive” genus-zero subgroups such that these subgroups and their genus-zero intersections determine all the Alexander invariants. Then, we classify the primitive subgroups in a special subclass. This result implies the known classification of the dihedral covers of irreducible trigonal curves.
引用
收藏
页码:265 / 286
页数:21
相关论文
共 50 条