Post-Newtonian Expansions for Perfect Fluids

被引:0
|
作者
Todd A. Oliynyk
机构
[1] Monash University,School of Mathematical Sciences
来源
关键词
Perfect Fluid; Weighted Sobolev Space; Newtonian Limit; Symmetric Hyperbolic System; High Order Expansion;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the existence of a large class of dynamical solutions to the Einstein-Euler equations that have a first post-Newtonian expansion. The results here are based on the elliptic-hyperbolic formulation of the Einstein-Euler equations used in [15], which contains a singular parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon = v_T/c}$$\end{document}, where vT is a characteristic velocity associated with the fluid and c is the speed of light. As in [15], energy estimates on weighted Sobolev spaces are used to analyze the behavior of solutions to the Einstein-Euler equations in the limit \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon\searrow 0}$$\end{document}, and to demonstrate the validity of the first post-Newtonian expansion as an approximation.
引用
收藏
相关论文
共 50 条
  • [41] The natural motion of matter in Newtonian and post-Newtonian physics
    Keck, John W.
    THOMIST, 2007, 71 (04): : 529 - 554
  • [42] Analytical high-order post-Newtonian expansions for spinning extreme mass ratio binaries
    Kavanagh, Chris
    Ottewill, Adrian C.
    Wardell, Barry
    PHYSICAL REVIEW D, 2016, 93 (12)
  • [43] ROTATING POLYTROPES IN POST-NEWTONIAN APPROXIMATION
    SUDBURY, AW
    AUSTRALIAN JOURNAL OF PHYSICS, 1967, 20 (02): : 193 - &
  • [44] SIMPLE ASPECTS OF POST-NEWTONIAN GRAVITATION
    FRISCH, DH
    AMERICAN JOURNAL OF PHYSICS, 1990, 58 (04) : 332 - 337
  • [45] Post-Newtonian Lagrangian planetary equations
    Calura, M
    Fortini, P
    Montanari, E
    PHYSICAL REVIEW D, 1997, 56 (08): : 4782 - 4788
  • [46] Theory of post-Newtonian radiation and reaction
    Birnholtz, Ofek
    Hadar, Shahar
    Kol, Barak
    PHYSICAL REVIEW D, 2013, 88 (10):
  • [47] ON THE LINEARITY OF THE PARAMETERIZED POST-NEWTONIAN METRIC
    KARLHEDE, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (03): : L103 - L104
  • [48] Post-Newtonian expansion of gravitational radiation
    Blanchet, L
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1999, (136): : 146 - 157
  • [49] POST-NEWTONIAN BEHAVIOR OF THE BONDI MASS
    GOMEZ, R
    REILLY, P
    WINICOUR, J
    ISAACSON, RA
    PHYSICAL REVIEW D, 1993, 47 (08): : 3292 - 3302
  • [50] The post-Newtonian limit of dilaton gravity
    Hsu, RR
    Yang, BK
    Lee, CR
    CHINESE JOURNAL OF PHYSICS, 1996, 34 (06) : 1285 - 1297