Cotorsion pair extensions

被引:0
|
作者
De Xu Zhou
机构
[1] Fujian Normal University,Department of Mathematics
关键词
cotorsion pair; ring extension; preenveloping class; 16D10; 16E40;
D O I
暂无
中图分类号
学科分类号
摘要
Assume that S is an almost excellent extension of R. Using functors HomR(S,−) and —⊗RS, we establish some connections between classes of modules [graphic not available: see fulltext] and [graphic not available: see fulltext], cotorsion pairs [graphic not available: see fulltext] and [graphic not available: see fulltext]. If [graphic not available: see fulltext] is a T-extension or (and) H-extension of [graphic not available: see fulltext], we show that [graphic not available: see fulltext] is a (resp., monomorphic, epimorphic, special) preenveloping class if and only if so is [graphic not available: see fulltext]. If [graphic not available: see fulltext] is a TH-extension of [graphic not available: see fulltext], we obtain that [graphic not available: see fulltext] is complete (resp., of finite type, of cofinite type, hereditary, perfect, n-tilting) if and only if so is [graphic not available: see fulltext].
引用
收藏
页码:1567 / 1582
页数:15
相关论文
共 50 条
  • [41] Baer cotorsion pairs
    Struengmann, Lutz
    ISRAEL JOURNAL OF MATHEMATICS, 2006, 151 (1) : 29 - 51
  • [42] Completeness of cotorsion pairs
    Saroch, Jan
    Trlifaj, Jan
    FORUM MATHEMATICUM, 2007, 19 (04) : 749 - 760
  • [43] On the lattice of cotorsion theories
    Göbel, R
    Shelah, S
    Wallutis, SL
    JOURNAL OF ALGEBRA, 2001, 238 (01) : 292 - 313
  • [44] COTORSION IN AN ABELIAN CATEGORY
    WIMBISH, GJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 283 - &
  • [45] Cotorsion theories and splitters
    Göbel, R
    Shelah, S
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (11) : 5357 - 5379
  • [46] Cotorsion Pairs of Complexes
    Yang, Xiaoyan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ALGEBRA 2010: ADVANCES IN ALGEBRAIC STRUCTURES, 2012, : 697 - 703
  • [47] Pair creation in localized electromagnetic fields of different spatial extensions
    Jiang, M.
    Lv, Q. Z.
    Liu, Y.
    Grobe, R.
    Su, Q.
    PHYSICAL REVIEW A, 2014, 90 (03):
  • [48] The Knapsack Problem with Conflict Pair Constraints on Bipartite Graphs and Extensions
    Punnen, Abraham P.
    Dhahan, Jasdeep
    ALGORITHMS, 2024, 17 (05)
  • [49] Cotorsion representations of quivers
    Oyonarte, L
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (12) : 5563 - 5574
  • [50] COMPLETELY COTORSION MODULES
    Pusat, Dilek
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2012, 65 (01): : 11 - 18