A note on negative λ-binomial distribution

被引:0
|
作者
Yuankui Ma
Taekyun Kim
机构
[1] Xi’an Technological University,School of Science
[2] Kwangwoon University,Department of Mathematics
关键词
Negative ; -binomial random variable; Expectation; Variance; Moments; 11B83; 11S80;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce one discrete random variable, namely the negative λ-binomial random variable. We deduce the expectation of the negative λ-binomial random variable. We also get the variance and explicit expression for the moments of the negative λ-binomial random variable.
引用
收藏
相关论文
共 50 条
  • [21] APPROXIMATIONS TO GENERALIZED NEGATIVE BINOMIAL DISTRIBUTION
    MAKABE, H
    GOVINDAR.Z
    ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (03): : 957 - &
  • [22] TABLES OF NEGATIVE BINOMIAL PROBABILITY DISTRIBUTION
    BLOM, G
    REVUE DE L INSTITUT INTERNATIONAL DE STATISTIQUE-REVIEW OF THE INTERNATIONAL STATISTICAL INSTITUTE, 1965, 33 (03): : 564 - &
  • [23] MYSTERY OF THE NEGATIVE BINOMIAL-DISTRIBUTION
    SZWED, R
    WROCHNA, G
    WROBLEWSKI, AK
    ACTA PHYSICA POLONICA B, 1988, 19 (09): : 763 - 782
  • [24] THE NEGATIVE BINOMIAL DISTRIBUTION IN QUANTUM PHYSICS
    Soederholm, Jonas
    Inoue, Shuichiro
    PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF QUANTUM MECHANICS IN THE LIGHT OF NEW TECHNOLOGY, 2009, : 345 - 348
  • [25] Asymptotic inversion of the binomial and negative binomial cumulative distribution functions
    Gil A.
    Segura J.
    Temme N.M.
    Gil, A. (amparo.gil@unican.es), 1600, Kent State University (52): : 270 - 280
  • [26] The Binomial and Negative Binomial Distribution in Discrete Time Markov Chains
    Frank, L.
    MARKOV PROCESSES AND RELATED FIELDS, 2017, 23 (03) : 377 - 400
  • [27] NEGATIVE BINOMIAL MULTIPLICITY DISTRIBUTION FROM BINOMIAL CLUSTER PRODUCTION
    ISO, C
    MORI, K
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1990, 46 (01): : 59 - 61
  • [28] Variance of the truncated negative binomial distribution
    Shonkwiler, J. S.
    JOURNAL OF ECONOMETRICS, 2016, 195 (02) : 209 - 210
  • [29] A new generalization of the negative binomial distribution
    Gupta, RC
    Ong, SH
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 45 (02) : 287 - 300
  • [30] Characterizations and generalizations of the negative binomial distribution
    Conceicao, Katiane S.
    Andrade, Marinho G.
    Louzada, Francisco
    Ravishanker, Nalini
    COMPUTATIONAL STATISTICS, 2022, 37 (03) : 1255 - 1286