Wavelet-based multiscale analysis of geomagnetic disturbance

被引:0
|
作者
N. Zaourar
M. Hamoudi
M. Mandea
G. Balasis
M. Holschneider
机构
[1] FSTGAT,Laboratoire de Géophysique
[2] Centre National d’Etudes Spatiales,Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing
[3] National Observatory of Athens,Institut für Mathematik
[4] Metaxa and Vasileos Pavlou,undefined
[5] Universität Potsdam,undefined
来源
Earth, Planets and Space | 2013年 / 65卷
关键词
Geomagnetic field; magnetosphere; geomagnetic storm; multiscale analysis; spectral exponent;
D O I
暂无
中图分类号
学科分类号
摘要
The dynamics of external contributions to the geomagnetic field is investigated by applying time-frequency methods to magnetic observatory data. Fractal models and multiscale analysis enable obtaining maximum quantitative information related to the short-term dynamics of the geomagnetic field activity. The stochastic properties of the horizontal component of the transient external field are determined by searching for scaling laws in the power spectra. The spectrum fits a power law with a scaling exponent β, a typical characteristic of self-affine time-series. Local variations in the power-law exponent are investigated by applying wavelet analysis to the same time-series. These analyses highlight the self-affine properties of geomagnetic perturbations and their persistence. Moreover, they show that the main phases of sudden storm disturbances are uniquely characterized by a scaling exponent varying between 1 and 3, possibly related to the energy contained in the external field. These new findings suggest the existence of a long-range dependence, the scaling exponent being an efficient indicator of geomagnetic activity and singularity detection. These results show that by using magnetogram regularity to reflect the magnetosphere activity, a theoretical analysis of the external geomagnetic field based on local power-law exponents is possible.
引用
收藏
页码:1525 / 1540
页数:15
相关论文
共 50 条
  • [31] Affine invariant multiscale wavelet-based shape matching algorithm
    El Rube', I
    Ahmed, M
    Kamel, M
    1ST CANADIAN CONFERENCE ON COMPUTER AND ROBOT VISION, PROCEEDINGS, 2004, : 217 - 224
  • [32] A Wavelet-Based Multiscale Ensemble Time-Scale Algorithm
    Percival, Donald B.
    Senior, Kenneth L.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2012, 59 (03) : 510 - 522
  • [33] Study on wavelet-based fuzzy multiscale edge detection method
    Zhu, W
    Hou, BP
    Zhang, ZG
    Zhou, KN
    FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PT 2, PROCEEDINGS, 2005, 3614 : 703 - 709
  • [34] Hydrologic regionalization using wavelet-based multiscale entropy method
    Agarwal, A.
    Maheswaran, R.
    Sehgal, V.
    Khosa, R.
    Sivakumar, B.
    Bernhofer, C.
    JOURNAL OF HYDROLOGY, 2016, 538 : 22 - 32
  • [35] Wavelet-based enhancement and denoising using multiscale structure tensor
    Scheunders, P
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2002, : 569 - 572
  • [36] Wavelet-based multiscale statistical process monitoring: A literature review
    Ganesan, R
    Das, TK
    Venkataraman, V
    IIE TRANSACTIONS, 2004, 36 (09) : 787 - 806
  • [37] Anisotropic Wavelet-Based Image Denoising Using Multiscale Products
    He, Ming
    Wang, Hao
    Xie, Hong-fu
    Yang, Ke-jun
    Gao, Qing-Wei
    CEIS 2011, 2011, 15
  • [38] Wavelet-based disturbance classification with robot arm application example
    Hölttä, V
    Varso, J
    2005 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ROBOTICS AND AUTOMATION, PROCEEDINGS, 2005, : 175 - 179
  • [39] Surge disturbance detection using wavelet-based neural network
    Wang, Jing
    Shu, Hongchun
    Chen, Xueyun
    Dianli Xitong Zidonghue/Automation of Electric Power Systems, 2002, 26 (06): : 50 - 54
  • [40] Power disturbance classifier using wavelet-based neural network
    Kim, Hongkyun
    Lee, Jinmok
    Choi, Jaeho
    Chung, Gyo-Bum
    2006 IEEE POWER ELECTRONICS SPECIALISTS CONFERENCE, VOLS 1-7, 2006, : 3279 - +