Ornstein–Uhlenbeck equations with time-dependent coefficients and Lévy noise in finite and infinite dimensions

被引:0
|
作者
Florian Knäble
机构
[1] Fakultät für Mathematik,Universität Bielefeld
来源
关键词
Invariant Measure; Mild Solution; Harnack Inequality; Evolution Family; Strong Continuity;
D O I
暂无
中图分类号
学科分类号
摘要
We solve a time-dependent linear SPDE with additive Lévy noise in the mild and weak sense. Existence of a generalized invariant measure for the associated transition semigroup is established and the generator is studied on the corresponding L2-space. The square field operator is characterized, allowing to derive a Poincaré and a Harnack inequality.
引用
收藏
页码:959 / 993
页数:34
相关论文
共 50 条
  • [21] On the Cauchy problem for wave equations with time-dependent coefficients
    Kinoshita, Tamotu
    Yagdjian, Karen
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2008, 13 (S08): : 1 - 20
  • [22] On the Cauchy problem for wave equations with time-dependent coefficients
    Institute of Mathematics, University of Tsukuba, Tsukuba Ibaraki 305-8571, Japan
    不详
    Int. J. Appl. Math. Stat., 2008, SO8 (1-20):
  • [23] A Cauchy problem of parabolic equations with time-dependent coefficients
    Liu, Bingchen
    Lin, Hongyan
    Li, Fengjie
    APPLICABLE ANALYSIS, 2021, 100 (06) : 1272 - 1285
  • [24] Degradation Modeling Based on a Time-Dependent Ornstein-Uhlenbeck Process and Residual Useful Lifetime Estimation
    Deng, Yingjun
    Barros, Anne
    Grall, Antoine
    IEEE TRANSACTIONS ON RELIABILITY, 2016, 65 (01) : 126 - 140
  • [25] Parameter estimation of stochastic SIR model driven by small Lévy noise with time-dependent periodic transmission
    Easlick, Terry
    Sun, Wei
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2025, 28 (01)
  • [26] Time regularity of solutions to linear equations with Levy noise in infinite dimensions
    Peszat, S.
    Zabczyk, J.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (03) : 719 - 751
  • [27] Measure functional differential equations with infinite time-dependent delay
    Gallegos, Claudio A.
    Henriquez, Hernan R.
    Mesquita, Jaqueline G.
    MATHEMATISCHE NACHRICHTEN, 2022, 295 (07) : 1327 - 1353
  • [28] Semi-Analytical Solutions for Barrier and American Options Written on a Time-Dependent Ornstein-Uhlenbeck Process
    Carr, Peter
    Itkin, Andrey
    JOURNAL OF DERIVATIVES, 2021, 29 (01): : 9 - 26
  • [29] Finite vs infinite derivative loss for abstract wave equations with singular time-dependent propagation speed
    Ghisi, Marina
    Gobbino, Massimo
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 166
  • [30] NUMERICAL UPSCALING FOR WAVE EQUATIONS WITH TIME-DEPENDENT MULTISCALE COEFFICIENTS*
    Maier, Bernhard
    Verfuerth, Barbara
    MULTISCALE MODELING & SIMULATION, 2022, 20 (04): : 1169 - 1190