Efficient number theoretic transform implementation on GPU for homomorphic encryption

被引:0
|
作者
Özgün Özerk
Can Elgezen
Ahmet Can Mert
Erdinç Öztürk
Erkay Savaş
机构
[1] Sabanci University,Faculty of Engineering and Natural Sciences
来源
关键词
Lattice-based cryptography; Homomorphic encryption; SEAL; Number theoretic transform; Polynomial multiplication; GPU; CUDA;
D O I
暂无
中图分类号
学科分类号
摘要
Lattice-based cryptography forms the mathematical basis for current homomorphic encryption schemes, which allows computation directly on encrypted data. Homomorphic encryption enables privacy-preserving applications such as secure cloud computing; yet, its practical applications suffer from the high computational complexity of homomorphic operations. Fast implementations of the homomorphic encryption schemes heavily depend on efficient polynomial arithmetic, multiplication of very large degree polynomials over polynomial rings, in particular. Number theoretic transform (NTT) accelerates large polynomial multiplication significantly, and therefore, it is the core arithmetic operation in the majority of homomorphic encryption scheme implementations. Therefore, practical homomorphic applications require efficient and fast implementations of NTT in different computing platforms. In this work, we present an efficient and fast implementation of NTT, inverse NTT and NTT-based polynomial multiplication operations for GPU platforms. To demonstrate that our GPU implementation can be utilized as an actual accelerator, we experimented with the key generation, the encryption and the decryption operations of the Brakerski/Fan–Vercauteren (BFV) homomorphic encryption scheme implemented in Microsoft’s SEAL homomorphic encryption library on GPU, all of which heavily depend on the NTT-based polynomial multiplication. Our GPU implementations improve the performance of these three BFV operations by up to 141.95×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document}, 105.17×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} and 90.13×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document}, respectively, on Tesla v100 GPU compared to the highly optimized SEAL library running on an Intel i9-7900X CPU.
引用
收藏
页码:2840 / 2872
页数:32
相关论文
共 50 条
  • [11] Accelerating Number Theoretic Transformations for Bootstrappable Homomorphic Encryption on GPUs
    Kim, Sangpyo
    Jung, Wonkyung
    Park, Jaiyoung
    Ahn, Jung Ho
    2020 IEEE INTERNATIONAL SYMPOSIUM ON WORKLOAD CHARACTERIZATION (IISWC 2020), 2020, : 264 - 275
  • [12] Parallel implementation of Nussbaumer algorithm and number theoretic transform on a GPU platform: application to qTESLA
    Wai-Kong Lee
    Sedat Akleylek
    Denis Chee-Keong Wong
    Wun-She Yap
    Bok-Min Goi
    Seong-Oun Hwang
    The Journal of Supercomputing, 2021, 77 : 3289 - 3314
  • [13] Parallel implementation of Nussbaumer algorithm and number theoretic transform on a GPU platform: application to qTESLA
    Lee, Wai-Kong
    Akleylek, Sedat
    Wong, Denis Chee-Keong
    Yap, Wun-She
    Goi, Bok-Min
    Hwang, Seong-Oun
    JOURNAL OF SUPERCOMPUTING, 2021, 77 (04): : 3289 - 3314
  • [14] Low-Complexity and High-Throughput Number Theoretic Transform Architecture for Polynomial Multiplication in Homomorphic Encryption
    Sutisna, Nana
    Brillianshah, Elkhan J.
    Syafalnin, Infall
    Hasanuddin, M. Ogin
    Adiono, Trio
    Juhana, Tutun
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [15] Accelerating Number Theoretic Transform in GPU Platform for qTESLA Scheme
    Lee, Wai-Kong
    Akleylek, Sedat
    Yap, Wun-She
    Goi, Bok-Min
    INFORMATION SECURITY PRACTICE AND EXPERIENCE, ISPEC 2019, 2019, 11879 : 41 - 55
  • [16] Design of a Fast Number Theoretical Transform Engine for Fully Homomorphic Encryption
    Feng, Xiang
    Li, Shuguo
    2017 IEEE INTERNATIONAL SYMPOSIUM ON CONSUMER ELECTRONICS (ISCE), 2017, : 86 - 87
  • [17] Positional Characteristics for Efficient Number Comparison over the Homomorphic Encryption
    M. Babenko
    A. Tchernykh
    N. Chervyakov
    V. Kuchukov
    V. Miranda-López
    R. Rivera-Rodriguez
    Z. Du
    E.-G. Talbi
    Programming and Computer Software, 2019, 45 : 532 - 543
  • [18] Positional Characteristics for Efficient Number Comparison over the Homomorphic Encryption
    Babenko, M.
    Tchernykh, A.
    Chervyakov, N.
    Kuchukov, V
    Miranda-Lopez, V
    Rivera-Rodriguez, R.
    Du, Z.
    Talbi, E-G
    PROGRAMMING AND COMPUTER SOFTWARE, 2019, 45 (08) : 532 - 543
  • [19] Digital Sound Encryption with Logistic Map and Number Theoretic Transform
    Satria, Yudi
    Rizky, Gabe P. H.
    Suryadi, M. T.
    INTERNATIONAL CONFERENCE ON MATHEMATICS: PURE, APPLIED AND COMPUTATION, 2018, 974
  • [20] Efficient Software Implementation of Homomorphic Encryption for Addition and Multiplication Operations
    Oh, Yongwoo
    Kim, Taeyun
    Kim, Hyoungshick
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM) 2019, 2019, 935 : 761 - 768