Efficient number theoretic transform implementation on GPU for homomorphic encryption

被引:0
|
作者
Özgün Özerk
Can Elgezen
Ahmet Can Mert
Erdinç Öztürk
Erkay Savaş
机构
[1] Sabanci University,Faculty of Engineering and Natural Sciences
来源
关键词
Lattice-based cryptography; Homomorphic encryption; SEAL; Number theoretic transform; Polynomial multiplication; GPU; CUDA;
D O I
暂无
中图分类号
学科分类号
摘要
Lattice-based cryptography forms the mathematical basis for current homomorphic encryption schemes, which allows computation directly on encrypted data. Homomorphic encryption enables privacy-preserving applications such as secure cloud computing; yet, its practical applications suffer from the high computational complexity of homomorphic operations. Fast implementations of the homomorphic encryption schemes heavily depend on efficient polynomial arithmetic, multiplication of very large degree polynomials over polynomial rings, in particular. Number theoretic transform (NTT) accelerates large polynomial multiplication significantly, and therefore, it is the core arithmetic operation in the majority of homomorphic encryption scheme implementations. Therefore, practical homomorphic applications require efficient and fast implementations of NTT in different computing platforms. In this work, we present an efficient and fast implementation of NTT, inverse NTT and NTT-based polynomial multiplication operations for GPU platforms. To demonstrate that our GPU implementation can be utilized as an actual accelerator, we experimented with the key generation, the encryption and the decryption operations of the Brakerski/Fan–Vercauteren (BFV) homomorphic encryption scheme implemented in Microsoft’s SEAL homomorphic encryption library on GPU, all of which heavily depend on the NTT-based polynomial multiplication. Our GPU implementations improve the performance of these three BFV operations by up to 141.95×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document}, 105.17×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} and 90.13×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document}, respectively, on Tesla v100 GPU compared to the highly optimized SEAL library running on an Intel i9-7900X CPU.
引用
收藏
页码:2840 / 2872
页数:32
相关论文
共 50 条
  • [1] Efficient number theoretic transform implementation on GPU for homomorphic encryption
    Ozerk, Ozgun
    Elgezen, Can
    Mert, Ahmet Can
    Ozturk, Erdinc
    Savas, Erkay
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (02): : 2840 - 2872
  • [2] Flexible GPU-Based Implementation of Number Theoretic Transform for Homomorphic Encryption
    Duong-Ngoc, Phap
    Pham, Thang Xuan
    Lee, Hanho
    Nguyen, Tuy Tan
    2022 19TH INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2022, : 259 - 260
  • [3] Accelerating number theoretic transform in GPU platform for fully homomorphic encryption
    Jia-Zheng Goey
    Wai-Kong Lee
    Bok-Min Goi
    Wun-She Yap
    The Journal of Supercomputing, 2021, 77 : 1455 - 1474
  • [4] Accelerating number theoretic transform in GPU platform for fully homomorphic encryption
    Goey, Jia-Zheng
    Lee, Wai-Kong
    Goi, Bok-Min
    Yap, Wun-She
    JOURNAL OF SUPERCOMPUTING, 2021, 77 (02): : 1455 - 1474
  • [5] Area-Efficient Number Theoretic Transform Architecture for Homomorphic Encryption
    Duong-Ngoc, Phap
    Kwon, Sunmin
    Yoo, Donghoon
    Lee, Hanho
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2023, 70 (03) : 1270 - 1283
  • [6] An Area-Efficient and Configurable Number Theoretic Transform Accelerator for Homomorphic Encryption
    Huang, Jingwen
    Kuo, Chiayi
    Liu, Sihuang
    Su, Tao
    ELECTRONICS, 2024, 13 (17)
  • [7] Number Theoretic Transform Architecture suitable to Lattice-based Fully-Homomorphic Encryption
    Paludo, Rogerio
    Sousa, Leonel
    2021 IEEE 32ND INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS (ASAP 2021), 2021, : 163 - 170
  • [8] Hardware Architecture of a Number Theoretic Transform for a Bootstrappable RNS-based Homomorphic Encryption Scheme
    Kim, Sunwoong
    Lee, Keewoo
    Cho, Wonhee
    Nam, Yujin
    Cheon, Jung Hee
    Rutenbar, Rob A.
    28TH IEEE INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM), 2020, : 56 - 64
  • [9] Homomorphic Encryption on GPU
    Ozcan, Ali Sah
    Ayduman, Can
    Turkoglu, Enes Recep
    Savas, Erkay
    IEEE ACCESS, 2023, 11 : 84168 - 84186
  • [10] Optimization and Implementation of Number Theoretical Transform Multiplier Butterfly Operation for Fully Homomorphic Encryption
    Hua Siliang
    Zhang Huiguo
    Wang Shuchang
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (05) : 1381 - 1388