The strong law of large numbers for sums of randomly chosen random variables

被引:0
|
作者
Agnieszka M. Gdula
Andrzej Krajka
机构
[1] Maria-Curie Skłodowska University,
来源
关键词
strong law of large numbers; randomly indexed sums; random sets; 60F15;
D O I
暂无
中图分类号
学科分类号
摘要
Let {Xn,n ≥ 1} be a sequence of independent or identically distributed dependent random variables, and let {An,n ≥ 1} be a sequence of random subsets of natural numbers independent of {Xn, n ≥ 1}. In this paper, we describe the strong law of large numbers (SLLN) of the form ∑i∈AnXi−E∑i∈AnXi/bn→0a.s.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\sum}_{i\in {A}_n}\left({X}_i-\mathrm{E}{\sum}_{i\in {A}_n}{X}_i\right)/{b}_n\to 0\ \mathrm{a}.\mathrm{s}. $$\end{document} as n → ∞ for some sequence of nondecreasing positive numbers {bn, n ≥ 1}. There often arises an assumption that {An, n ≥ 1} are almost surely increasing: An ⊂ An + 1, a. s n ≥ 1.
引用
收藏
页码:471 / 482
页数:11
相关论文
共 50 条
  • [31] Strong Law of Large Numbers for Weighted Sums of Random Variables and Its Applications in EV Regression Models
    Yunjie Peng
    Xiaoqian Zheng
    Wei Yu
    Kaixin He
    Xuejun Wang
    [J]. Journal of Systems Science and Complexity, 2022, 35 : 342 - 360
  • [32] The strong law of large numbers for pairwise NQD random variables
    Qunying Wu
    Yuanying Jiang
    [J]. Journal of Systems Science and Complexity, 2011, 24 : 347 - 357
  • [33] On the Strong Law of Large Numbers for a Sequence of Dependent Random Variables
    Petrov V.V.
    [J]. Journal of Mathematical Sciences, 2014, 199 (2) : 225 - 227
  • [34] Strong Law of Large Numbers for Negatively Associated Random Variables
    Wang, Yourong
    Tan, Yili
    Liu, Yanli
    [J]. INFORMATION COMPUTING AND APPLICATIONS, PT II, 2011, 244 : 18 - +
  • [35] On the strong law of large numbers for φ-mixing and ρ-mixing random variables
    Anna Kuczmaszewska
    [J]. Acta Mathematica Hungarica, 2011, 132 : 174 - 189
  • [36] A strong law of large numbers for nonnegative random variables and applications
    Chen, Pingyan
    Sung, Soo Hak
    [J]. STATISTICS & PROBABILITY LETTERS, 2016, 118 : 80 - 86
  • [37] Generalization of strong law of large numbers for nonnegative random variables
    Ghazani, Z. Shokooh
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2018, 57 (05): : 128 - 132
  • [38] STRONG LAW OF LARGE NUMBERS FOR RANDOM VARIABLES WITH MULTIDIMENSIONAL INDICES
    Gdula, Agnieszka M.
    Krajka, Andrzej
    [J]. PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2017, 37 (01): : 185 - 199
  • [39] The Kolmogorov strong law of large numbers for WOD random variables
    Yingqiang Huang
    Pingyan Chen
    Soo Hak Sung
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [40] Tightness and strong law of large numbers for fuzzy random variables
    Kim, YK
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, VOL 3, 2003, : 77 - 87