Volumetric Investigations on Molecular Interactions of Glycine/l-alanine in Aqueous Citric Acid Solutions at Different Temperatures

被引:0
|
作者
Poonam Patyar
Gurpreet Kaur
Tarnveer Kaur
机构
[1] Punjabi University,Department of Chemistry
来源
关键词
Hydration number; Interaction coefficients; Partial molar expansibilities; Partial molar volumes; Partial molar volumes of transfer; Apparent specific volumes;
D O I
暂无
中图分类号
学科分类号
摘要
Apparent molar volumes (ϕV)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\phi_{V})$$\end{document} of glycine/l-alanine in water and in aqueous citric acid (CA) solutions of varying concentrations, i.e. (0.05, 0.10, 0.20, 0.30, 0.40 and 0.50) mol·kg−1 were determined from density measurements at temperatures T = (288.15, 298.15, 308.15, 310.15 and 318.15) K and at atmospheric pressure. Limiting partial molar volumes (ϕVo)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\phi_V^{\text{o}})$$\end{document} and their corresponding partial molar volumes of transfer (ΔtrϕV)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Delta_{\text{tr}} \phi_{V} )$$\end{document} have been calculated from the ϕV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi_{V}$$\end{document} data. The negative ΔtrϕV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta_{\text{tr}} \phi_{V}$$\end{document} values obtained for glycine/l-alanine from water to aqueous CA solutions indicate the dominance of hydrophilic–hydrophobic/hydrophobic–hydrophilic and hydrophobic–hydrophobic interactions over ion/hydrophilic–dipolar interactions. Further, pair and triplet interaction coefficients, i.e.(VAB)and(VABB)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(V_{\text{AB}} )\;{\text{and}}\; (V_{\text{ABB}} )$$\end{document} along with hydration number (nH)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n_{\text{H}} )$$\end{document} have also been calculated. The effect of temperature on the volumetric properties of glycine/l-alanine in water and in aqueous CA solutions has been determined from the limiting partial molar expansibilities (∂ϕVo/∂T)p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\partial \phi_{V}^{\text{o}} /\partial T)_{p}$$\end{document} and their second-order derivative (∂2ϕVo/∂T2)P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\partial^{2} \phi_{V}^{\text{o}} /\partial T^{2} )_{{P}}$$\end{document}. The apparent specific volumes (νϕ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\nu_{\phi} )$$\end{document} for glycine and l-alanine tend to approach sweet taste behavior both in the presence of water and in aqueous CA solutions. The νϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{\phi}$$\end{document} values for glycine/l-alanine increase with increase in concentration of CA at all temperatures studied. This reveals that CA helps in enhancing the sweet taste behavior of glycine/l-alanine which also supports the dominance of hydrophobic–hydrophobic interactions.
引用
收藏
页码:2039 / 2067
页数:28
相关论文
共 50 条
  • [31] Volumetric, viscometric and molecular simulation studies of glycine in aqueous sodium sulphate solutions at different temperatures
    Paez, Manuel
    Figueredo, Said
    Perez, Dairo
    Vergara, Maria
    Lans, Edineldo
    JOURNAL OF MOLECULAR LIQUIDS, 2018, 266 : 718 - 726
  • [32] Viscometric study of glycine, α-alanine and β-alanine in aqueous and aqueous D-glucose solutions at different temperatures
    Das, Sanjibita
    Dash, Upendra N.
    Journal of Chemical and Pharmaceutical Research, 2012, 4 (08) : 3869 - 3876
  • [33] PROMOTION OF INDOLEACETIC ACID DESTRUCTION BY CITRIC ACID AND L-ALANINE
    LOEWENBERG, JR
    PHYSIOLOGIA PLANTARUM, 1965, 18 (01) : 31 - +
  • [34] Enthalpies of dilution of glycine, L-alanine and L-serine in aqueous potassium chloride solutions
    Wang, X
    Xu, L
    Lin, R
    Sun, D
    THERMOCHIMICA ACTA, 2005, 425 (1-2) : 31 - 37
  • [35] Densities, speeds of sound and viscosities of L-alanine in aqueous fructose, maltose and lactose solutions at different temperatures
    Pal, Amalendu
    Chauhan, Nalin
    INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 2009, 48 (08): : 1069 - 1077
  • [36] Thermal properties and interpartical interactions of l-proline, glycine, and l-alanine in aqueous urea solutions at 288–318 K
    V. P. Korolev
    O. A. Antonova
    N. L. Smirnova
    Journal of Thermal Analysis and Calorimetry, 2012, 108 : 1 - 7
  • [37] Enthalpic Interactions of HMBA with Glycine, L-Alanine, and L-Serine in Aqueous D-Mannitol Solutions at 298.15 K
    Wang, Chunmei
    Dong, Lina
    Niu, Meiju
    Liu, Min
    Sun, Dezhi
    Wang, Bingquan
    Han, Jun
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2015, 60 (03): : 845 - 855
  • [38] Volumetric and ultrasonic studies of molecular interactions of glycols in aqueous glutaraldehyde solutions at different temperatures
    Kaur, Parminder
    Chakraborty, Nabaparna
    Juglan, K.C.
    Kumar, Harsh
    Journal of Molecular Liquids, 2020, 315
  • [39] Volumetric and ultrasonic studies of molecular interactions of glycols in aqueous glutaraldehyde solutions at different temperatures
    Kaur, Parminder
    Chakraborty, Nabaparna
    Juglan, K. C.
    Kumar, Harsh
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 315
  • [40] Viscosities of Glycine and L-Alanine in (0.2, 0.4, 0.6, and 0.8) mol.kg-1 Aqueous Dipotassium Hydrogen Phosphate Solutions at Different Temperatures
    Kumar, Harsh
    Kaur, Kirtanjot
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2012, 57 (12): : 3416 - 3421