Quadratic differentials and conformal invariants

被引:0
|
作者
Schippers E. [1 ]
机构
[1] Eric Schippers, University of Manitoba, Winnipeg
基金
加拿大自然科学与工程研究理事会;
关键词
Bounded univalent functions; Conformal invariants; Extremal problems; Quadratic differential;
D O I
10.1007/s41478-016-0014-5
中图分类号
学科分类号
摘要
We define a notion of conformal invariance associated with nested domains, suitable for characterizing higher-order information about mapping functions. We give an exposition of our results which yield an infinite-dimensional family of conformal invariants for nested hyperbolic simply-connected domains. Each invariant is specified by a quadratic differential which is admissible for the outer domain, and is strictly negative unless the inner domain is the outer domain minus trajectories of the quadratic differential. These invariants are furthermore monotonic. Using the aforementioned invariants, we show that one can obtain various classical estimates for bounded univalent functions, and in many cases extend them, by choosing particular quadratic differentials. We also explain the principles behind these results and their context within the literature. © 2017, Forum D'Analystes, Chennai.
引用
收藏
页码:209 / 228
页数:19
相关论文
共 50 条
  • [21] Extremal problems for quadratic differentials
    Fehlmann, R
    Gardiner, FP
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 1995, 42 (03) : 573 - 591
  • [22] Degenerations of quadratic differentials on CP
    Boissy, Corentin
    [J]. GEOMETRY & TOPOLOGY, 2008, 12 : 1345 - 1386
  • [23] Quadratic differentials as stability conditions
    Tom Bridgeland
    Ivan Smith
    [J]. Publications mathématiques de l'IHÉS, 2015, 121 : 155 - 278
  • [24] A sewing theorem for quadratic differentials
    Emel'yanov E.G.
    [J]. Journal of Mathematical Sciences, 2010, 166 (2) : 162 - 166
  • [25] QUADRATIC DIFFERENTIALS - PRELIMINARY REPORT
    WIENER, JC
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A119 - A119
  • [26] QUADRATIC DIFFERENTIALS AS STABILITY CONDITIONS
    Bridgeland, Tom
    Smith, Ivan
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2015, (121): : 155 - 278
  • [27] Quadratic differentials and signed measures
    Yuliy Baryshnikov
    Boris Shapiro
    [J]. Journal d'Analyse Mathématique, 2021, 144 : 1 - 19
  • [28] CONFORMAL INVARIANTS OF MINKOWSKI SPACE
    MORAVA, J
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 95 (04) : 565 - 570
  • [29] Sewing Homeomorphism and Conformal Invariants
    Tao CHENG
    Hui Qiang SHI
    Shanshuang YANG
    [J]. Acta Mathematica Sinica,English Series, 2017, (10) : 1321 - 1338
  • [30] CONFORMAL INVARIANTS OF FINSLER VARIETIES
    AKBARZAD.H
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 268 (07): : 402 - &