On the motion of billiards in ellipses

被引:0
|
作者
Hellmuth Stachel
机构
[1] Vienna University of Technology,Institute of Discrete Mathematics and Geometry
来源
关键词
Billiard; Billiard motion; Confocal conics; Elliptic functions; 51N20; 53A17; 33E05; 22E30;
D O I
暂无
中图分类号
学科分类号
摘要
For billiards in an ellipse e with an ellipse as caustic, there exist canonical coordinates on e such that the billiard transformation from vertex to vertex is equivalent to a shift of coordinates. A kinematic analysis of billiard motions offers a new approach to canonical parametrizations of billiards and associated Poncelet grids. This parametrization uses Jacobian elliptic functions with the modulus equal to the numerical eccentricity of the caustic and is the basis for proving a few invariants of periodic billiards.
引用
收藏
页码:1602 / 1622
页数:20
相关论文
共 50 条
  • [31] Convergence to α-stable Levy motion for chaotic billiards with several cusps at flat points
    Jung, Paul
    Pene, Francoise
    Zhang, Hong-Kun
    NONLINEARITY, 2020, 33 (02) : 807 - 839
  • [32] ELLIPSES OF BENJAMIN
    Mayorga, Juan
    CONSTELACIONES-REVISTA DE TEORIA CRITICA, 2010, 2 : 372 - 374
  • [33] Ω-Arithmetization of Ellipses
    Chollet, Agathe
    Wallet, Guy
    Andres, Eric
    Fuchs, Laurent
    Largeteau-Skapin, Gaelle
    Richard, Aurelie
    COMPUTATIONAL MODELING OF OBJECTS REPRESENTED IN IMAGES, PROCEEDINGS, 2010, 6026 : 24 - +
  • [34] Ellipses.
    DeCoste, Susie
    CANADIAN LITERATURE, 2014, (223): : 172 - 173
  • [35] ER (. . .) Ellipses
    Obarrio, Juan
    SOCIAL TEXT, 2011, 29 (02) : 121 - 127
  • [36] ELLIPSES + FILMMAKING
    ROZENBERG, J
    VIA, 1988, 9 : 106 - 118
  • [37] Billiards
    Hoberman, Mara
    ARTFORUM INTERNATIONAL, 2022, 60 (10): : 246 - 247
  • [38] 'OF ELLIPSES AND DEVIATIONS'
    BULLIS, J
    POETRY, 1983, 141 (04) : 200 - 200
  • [39] MORE ELLIPSES
    CORKREY, R
    NATURE, 1990, 347 (6294) : 623 - 624
  • [40] Permutation Ellipses
    Kimberling, Clark
    Moses, Peter J. C.
    JOURNAL FOR GEOMETRY AND GRAPHICS, 2020, 24 (02): : 233 - 247