On strictly positive solutions for some semilinear elliptic problems

被引:0
|
作者
T. Godoy
U. Kaufmann
机构
[1] FaMAF,
[2] Universidad Nacional de Córdoba,undefined
关键词
35J25; 35J61; 35B09; 35J65; Elliptic problems; Indefinite nonlinearities; Sub and supersolutions; Positive solutions;
D O I
暂无
中图分类号
学科分类号
摘要
Let B be a ball in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{N}}$$\end{document}, N ≥ 1, let m be a possibly discontinuous and unbounded function that changes sign in B and let 0 < p < 1. We study existence and nonexistence of strictly positive solutions for semilinear elliptic problems of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-\Delta u=m(x) u^{p}}$$\end{document} in B, u = 0 on ∂B.
引用
收藏
页码:779 / 795
页数:16
相关论文
共 50 条
  • [41] New Entire Solutions to Some Classical Semilinear Elliptic Problems
    del Pino, Manuel
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL III: INVITED LECTURES, 2010, : 1934 - 1957
  • [42] STRICTLY POSITIVE SOLUTIONS FOR ONE-DIMENSIONAL NONLINEAR ELLIPTIC PROBLEMS
    Kaufmann, Uriel
    Medri, Ivan
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [43] Positive solutions of semilinear elliptic problems in unbounded domains with unbounded boundary
    Cerami, Giovanna
    Molle, Riccardo
    Passaseo, Donato
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (01): : 41 - 60
  • [44] Existence of positive solutions to semilinear elliptic problems with nonlinear boundary condition
    Kim, Chan-Gyun
    Lee, Eun Kyoung
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (05):
  • [45] Existence of positive solutions to semilinear elliptic problems with nonlinear boundary condition
    Chan-Gyun Kim
    Eun Kyoung Lee
    Proceedings - Mathematical Sciences, 2018, 128
  • [46] Positive solutions of singular semilinear elliptic problems in NTA-cones
    Gharbi, Lassaad
    Ben Boubaker, Mohamed Amine
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2017, 138 : 265 - 282
  • [47] Asymptotic behaviour of positive solutions of semilinear elliptic problems with increasing powers
    Boccardo, Lucio
    Maia, Liliane
    Pellacci, Benedetta
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (05) : 1233 - 1250
  • [48] Existence of global branches of positive solutions for semilinear elliptic degenerate problems
    Esteban, MJ
    Giacomoni, J
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2000, 79 (07): : 715 - 740
  • [49] POSITIVE FINITE-ENERGY SOLUTIONS OF CRITICAL SEMILINEAR ELLIPTIC PROBLEMS
    NOUSSAIR, ES
    SWANSON, CA
    YANG, JF
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1992, 44 (05): : 1014 - 1029
  • [50] Uniqueness of positive solutions of semilinear elliptic equations and related eigenvalue problems
    Pacella F.
    Milan Journal of Mathematics, 2005, 73 (1) : 221 - 236