Topological Pressure of Generic Points for Amenable Group Actions

被引:0
|
作者
Ruifeng Zhang
机构
[1] Hefei University of Technology,School of Mathematics
关键词
Almost specification property; Pressure; Generic points; Amenable group; 37B05; 37B45; 54H20;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X, G) be a G-action topological dynamical system (t.d.s. for short), where G is a countably infinite discrete amenable group. In this paper, we study the topological pressure of the sets of generic points. We show that when the system satisfies the almost specification property, for any G-invariant measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and any continuous map φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}, PXμ,φ,{Fn}=hμ(X)+∫φdμ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} P\left( X_{\mu },\varphi ,\{F_n\}\right) = h_{\mu }(X)+\int \varphi d\mu , \end{aligned}$$\end{document}where {Fn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{F_n\}$$\end{document} is a Følner sequence, Xμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{\mu }$$\end{document} is the set of generic points of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} with respect to (w.r.t. for short) {Fn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{F_n\}$$\end{document}, P(Xμ,φ,{Fn})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(X_{\mu },\varphi ,\{F_n\})$$\end{document} is the topological pressure of Xμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{\mu }$$\end{document} for φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} w.r.t. {Fn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{F_n\}$$\end{document} and hμ(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{\mu }(X)$$\end{document} is the measure-theoretic entropy.
引用
收藏
页码:1583 / 1606
页数:23
相关论文
共 50 条
  • [21] On the Topological Entropy of Saturated Sets for Amenable Group Actions
    Xiankun Ren
    Xueting Tian
    Yunhua Zhou
    [J]. Journal of Dynamics and Differential Equations, 2023, 35 : 2873 - 2904
  • [22] Topological Entropy Dimension of Amenable Group Actions for Noncompact Sets
    Lei Liu
    Jinlei Jiao
    Xiaoyao Zhou
    [J]. Frontiers of Mathematics, 2025, 20 (2): : 375 - 401
  • [23] MEASURE-THEORETIC PRESSURE FOR AMENABLE GROUP ACTIONS
    Zhao, Yun
    [J]. COLLOQUIUM MATHEMATICUM, 2017, 148 (01) : 87 - 106
  • [24] Periodic points for amenable group actions on uniquely arcwise connected continua
    Shi, Enhui
    Ye, Xiangdong
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (09) : 2833 - 2844
  • [25] The pressure of intricacy and average sample complexity for amenable group actions
    Xiao, Zubiao
    Huang, Jinna
    [J]. MONATSHEFTE FUR MATHEMATIK, 2024, 205 (02): : 391 - 414
  • [26] WEAKLY ALMOST PERIODIC POINTS AND CHAOTIC DYNAMICS OF DISCRETE AMENABLE GROUP ACTIONS
    Ling, Bin
    Nie, Xiaoxiao
    Yin, Jiandong
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (01) : 39 - 52
  • [27] Multiorders in amenable group actions
    Downarowicz, Tomasz
    Oprocha, Piotr
    Wiecek, Mateusz
    Zhang, Guohua
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2024, 18 (01) : 25 - 65
  • [28] Asymptotic pairs in topological actions of amenable groups
    Downarowicz, Tomasz
    Wiecek, Mateusz
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 398 : 373 - 394
  • [29] Local Entropy, Metric Entropy and Topological Entropy for Countable Discrete Amenable Group Actions
    Ren, Xiankun
    Sun, Wenxiang
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (07):
  • [30] Sequence entropy for amenable group actions
    Liu, Chunlin
    Yan, Kesong
    [J]. PHYSICA SCRIPTA, 2023, 98 (12)