Blow Up Criteria for the Incompressible Nematic Liquid Crystal Flows

被引:0
|
作者
Qiao Liu
Yemei Wei
机构
[1] Hunan Normal University,Department of Mathematics
来源
Acta Applicandae Mathematicae | 2017年 / 147卷
关键词
Incompressible nematic liquid crystal flows; Navier–Stokes equations; Blow up criteria; 76A15; 35Q35; 76W05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate blow up criteria for the local smooth solutions to the 3D incompressible nematic liquid crystal flows via the components of the gradient velocity field ∇u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nabla u$\end{document} and the gradient orientation field ∇d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nabla d$\end{document}. More precisely, we show that 0<T∗<+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< T_{ \ast}<+\infty$\end{document} is the maximal time interval if and only if ∫0T∗∥∥∂iu∥Lxiγ∥Lxjxkαβ+∥∇d∥L∞83dt=∞, with 2α+2β≤3α+24α, and 1≤γ≤α,2<α≤+∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} & \int_{0}^{T_{\ast}} \bigl\Vert \Vert \partial_{i}u\Vert _{L_{x_{i}} ^{\gamma}} \bigr\Vert _{L_{x_{j}x_{k}}^{\alpha}}^{\beta}+ \|\nabla d\| _{L^{\infty}}^{\frac{8}{3}}\mathrm{d}t=\infty, \\ &\quad\text{ with } \frac{2}{\alpha}+\frac{2}{\beta}\leq\frac{3\alpha +2}{4\alpha}, \text{ and } 1\leq\gamma\leq\alpha,2< \alpha\leq+\infty, \end{aligned}$$ \end{document} or ∫0T∗∥∂3u3∥Lαβ+∥∇d∥L∞83dt=∞,with 3α+2β≤3(α+2)4α, and 2<α≤∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \int_{0}^{T_{\ast}}\|\partial_{3}u_{3} \|^{\beta}_{L^{\alpha}}+\| \nabla d\|^{\frac{8}{3}}_{L^{\infty}} \mathrm{d}t=\infty,\quad\text{with } \frac{3}{\alpha}+\frac{2}{\beta}\leq \frac{3(\alpha+2)}{4 \alpha}, \text{ and } 2< \alpha\leq\infty, \end{aligned}$$ \end{document} where i,j,k∈{1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i,j,k\in\{1,2,3\}$\end{document}, i≠j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i\neq j$\end{document}, i≠k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i\neq k$\end{document}, and j≠k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$j\neq k$\end{document}.
引用
收藏
页码:63 / 80
页数:17
相关论文
共 50 条
  • [21] Blow-up criteria for 3D nematic liquid crystal models in a bounded domain
    Fan, Jishan
    Nakamura, Gen
    Zhou, Yong
    BOUNDARY VALUE PROBLEMS, 2013,
  • [22] Incompressible limit for compressible nematic liquid crystal flows in a bounded domain
    Guo Boling
    Zeng Lan
    Ni Guoxi
    APPLICABLE ANALYSIS, 2020, 99 (08) : 1402 - 1424
  • [23] Two new regularity criteria for nematic liquid crystal flows
    Wei, Ruiying
    Li, Yin
    Yao, Zheng-an
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (01) : 636 - 650
  • [24] A logarithmically improved blow-up criterion of smooth solutions for nematic liquid crystal flows with partial viscosity
    Wang, Yin-Xia
    SCIENCEASIA, 2013, 39 (01): : 73 - 78
  • [25] A Blow-up Criterion for 2D Compressible Nematic Liquid Crystal Flows in Terms of Density
    Liu, Shengquan
    Wang, Shujuan
    ACTA APPLICANDAE MATHEMATICAE, 2017, 147 (01) : 39 - 62
  • [26] A Blow-up Criterion for 2D Compressible Nematic Liquid Crystal Flows in Terms of Density
    Shengquan Liu
    Shujuan Wang
    Acta Applicandae Mathematicae, 2017, 147 : 39 - 62
  • [27] On some large global solutions to the incompressible inhomogeneous nematic liquid crystal flows
    Zhai, Xiaoping
    Yin, Zhaoyang
    APPLICABLE ANALYSIS, 2020, 99 (06) : 959 - 975
  • [28] Strong solutions to the density-dependent incompressible nematic liquid crystal flows
    Gao, Jincheng
    Tao, Qiang
    Yao, Zheng-an
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (04) : 3691 - 3748
  • [29] Blow-up criterion for the incompressible viscoelastic flows
    Feng, Zefu
    Zhu, Changjiang
    Zi, Ruizhao
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (09) : 3742 - 3762
  • [30] Blow-up of the Smooth Solution to the Compressible Nematic Liquid Crystal System
    Wang, Guangwu
    Guo, Boling
    ACTA APPLICANDAE MATHEMATICAE, 2018, 156 (01) : 211 - 224