Combined performance of screening and variable selection methods in ultra-high dimensional data in predicting time-to-event outcomes

被引:6
|
作者
Lira Pi
Susan Halabi
机构
[1] Duke University Medical Center,Department of Biostatistics and Bioinformatics
关键词
Variable selection; Calibration; Overfitting; Machine learning; Proportional hazards model; Prognostic models; Elastic net; Random forest; High dimensional data; Germline single-nucleotide polymorphism; Survival outcomes;
D O I
10.1186/s41512-018-0043-4
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] NONPARAMETRIC INDEPENDENCE SCREENING AND STRUCTURE IDENTIFICATION FOR ULTRA-HIGH DIMENSIONAL LONGITUDINAL DATA
    Cheng, Ming-Yen
    Honda, Toshio
    Li, Jialiang
    Peng, Heng
    ANNALS OF STATISTICS, 2014, 42 (05): : 1819 - 1849
  • [42] Sequential Feature Screening for Generalized Linear Models with Sparse Ultra-High Dimensional Data
    Junying Zhang
    Hang Wang
    Riquan Zhang
    Jiajia Zhang
    Journal of Systems Science and Complexity, 2020, 33 : 510 - 526
  • [43] Large-Scale Online Feature Selection for Ultra-High Dimensional Sparse Data
    Wu, Yue
    Hoi, Steven C. H.
    Mei, Tao
    Yu, Nenghai
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2017, 11 (04)
  • [44] Model-free feature screening for ultra-high dimensional competing risks data
    Chen, Xiaolin
    Zhang, Yahui
    Liu, Yi
    Chen, Xiaojing
    STATISTICS & PROBABILITY LETTERS, 2020, 164
  • [45] Sequential Feature Screening for Generalized Linear Models with Sparse Ultra-High Dimensional Data
    ZHANG Junying
    WANG Hang
    ZHANG Riquan
    ZHANG Jiajia
    Journal of Systems Science & Complexity, 2020, 33 (02) : 510 - 526
  • [46] Sequential Feature Screening for Generalized Linear Models with Sparse Ultra-High Dimensional Data
    Zhang, Junying
    Wang, Hang
    Zhang, Riquan
    Zhang, Jiajia
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2020, 33 (02) : 510 - 526
  • [47] Conditional distance correlation sure independence screening for ultra-high dimensional survival data
    Lu, Shuiyun
    Chen, Xiaolin
    Wang, Hong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (08) : 1936 - 1953
  • [48] Variable selection via combined penalization for high-dimensional data analysis
    Wang, Xiaoming
    Park, Taesung
    Carriere, K. C.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (10) : 2230 - 2243
  • [49] Ultra-high dimensional variable selection with application to normative aging study: DNA methylation and metabolic syndrome
    Grace Yoon
    Yinan Zheng
    Zhou Zhang
    Haixiang Zhang
    Tao Gao
    Brian Joyce
    Wei Zhang
    Weihua Guan
    Andrea A. Baccarelli
    Wenxin Jiang
    Joel Schwartz
    Pantel S. Vokonas
    Lifang Hou
    Lei Liu
    BMC Bioinformatics, 18
  • [50] Ultra-high dimensional variable selection with application to normative aging study: DNA methylation and metabolic syndrome
    Yoon, Grace
    Zheng, Yinan
    Zhang, Zhou
    Zhang, Haixiang
    Gao, Tao
    Joyce, Brian
    Zhang, Wei
    Guan, Weihua
    Baccarelli, Andrea A.
    Jiang, Wenxin
    Schwartz, Joel
    Vokonas, Pantel S.
    Hou, Lifang
    Liu, Lei
    BMC BIOINFORMATICS, 2017, 18