A single-cell analysis of breast cancer cell lines to study tumour heterogeneity and drug response

被引:0
|
作者
G. Gambardella
G. Viscido
B. Tumaini
A. Isacchi
R. Bosotti
D. di Bernardo
机构
[1] Telethon Institute of Genetics and Medicine,
[2] University of Naples Federico II,undefined
[3] Department of Chemical,undefined
[4] Materials and Industrial Engineering,undefined
[5] NMSsrl,undefined
[6] Nerviano Medical Sciences,undefined
来源
Nature Communications | / 13卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Cancer cells within a tumour have heterogeneous phenotypes and exhibit dynamic plasticity. How to evaluate such heterogeneity and its impact on outcome and drug response is still unclear. Here, we transcriptionally profile 35,276 individual cells from 32 breast cancer cell lines to yield a single cell atlas. We find high degree of heterogeneity in the expression of biomarkers. We then train a deconvolution algorithm on the atlas to determine cell line composition from bulk gene expression profiles of tumour biopsies, thus enabling cell line-based patient stratification. Finally, we link results from large-scale in vitro drug screening in cell lines to the single cell data to computationally predict drug responses starting from single-cell profiles. We find that transcriptional heterogeneity enables cells with differential drug sensitivity to co-exist in the same population. Our work provides a framework to determine tumour heterogeneity in terms of cell line composition and drug response.
引用
收藏
相关论文
共 50 条
  • [21] Single-cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma
    Zheng, Hongping
    Pomyen, Yotsawat
    Hernandez, Maria Olga
    Li, Caiyi
    Livak, Ferenc
    Tang, Wei
    Dang, Hien
    Greten, Tim F.
    Davis, Jeremy L.
    Zhao, Yongmei
    Mehta, Monika
    Levin, Yelena
    Shetty, Jyoti
    Tran, Bao
    Budhu, Anuradha
    Wang, Xin Wei
    HEPATOLOGY, 2018, 68 (01) : 127 - 140
  • [22] Endothelial cell heterogeneity defined by single-cell spatial transcriptomic analysis of breast cancers
    Homicsko, K.
    Zaman, K.
    Stravodimou, A.
    ANNALS OF ONCOLOGY, 2023, 34 : S1168 - S1169
  • [23] Single-cell analysis: Understanding infected cell heterogeneity
    Alberdi, Lucrecia
    Meresse, Stephane
    VIRULENCE, 2017, 8 (06) : 605 - 606
  • [24] SINGLE-CELL ANALYSIS AND MODELLING OF CELL POPULATION HETEROGENEITY
    Samusik, Nikolay
    Aghaeepour, Nima
    Bendall, Sean
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017, 2017, : 557 - 563
  • [25] Single-cell architecture of the tumour microenvironment predicts response to cancer immunotherapy
    Schuerch, C.
    Phillips, D.
    Matusiak, M.
    Gutierrez, B. Rivero
    Bhate, S.
    Barlow, G.
    Jiang, S.
    Smythe, K.
    Goltsev, Y.
    West, R.
    Khodadoust, M.
    Kim, Y.
    Nolan, G.
    VIRCHOWS ARCHIV, 2021, 479 (SUPPL 1) : S61 - S61
  • [26] Understanding tumour endothelial cell heterogeneity and function from single-cell omics
    Qun Zeng
    Mira Mousa
    Aisha Shigna Nadukkandy
    Lies Franssens
    Halima Alnaqbi
    Fatima Yousif Alshamsi
    Habiba Al Safar
    Peter Carmeliet
    Nature Reviews Cancer, 2023, 23 : 544 - 564
  • [27] Understanding tumour endothelial cell heterogeneity and function from single-cell omics
    Zeng, Qun
    Mousa, Mira
    Nadukkandy, Aisha Shigna
    Franssens, Lies
    Alnaqbi, Halima
    Alshamsi, Fatima Yousif
    Safar, Habiba Al
    Carmeliet, Peter
    NATURE REVIEWS CANCER, 2023, 23 (08) : 544 - 564
  • [28] The heterogeneity of breast cancer metastasis: a bioinformatics analysis utilizing single-cell RNA sequencing data
    Sanjaya, Ardo
    Ratnawati, Hana
    Adhika, Oeij Anindita
    Rahmatilah, Faiz Rizqy
    BREAST CANCER RESEARCH AND TREATMENT, 2024, 208 (02) : 379 - 390
  • [29] Precision treatment exploration of breast cancer based on heterogeneity analysis of lncRNAs at the single-cell level
    Zhang, Yan
    Zhang, Denan
    Meng, Qingkang
    Liu, Ziqi
    Xie, Hongbo
    Liu, Lei
    Xu, Fei
    Chen, Xiujie
    BMC CANCER, 2021, 21 (01)
  • [30] Precision treatment exploration of breast cancer based on heterogeneity analysis of lncRNAs at the single-cell level
    Yan Zhang
    Denan Zhang
    Qingkang Meng
    Ziqi Liu
    Hongbo Xie
    Lei Liu
    Fei Xu
    Xiujie Chen
    BMC Cancer, 21