Aerodynamic Design of Airfoil Shape for Gust Generation in a Transonic Wind Tunnel

被引:0
|
作者
Nunzio Natale
Serena Russo
Sylvie Dequand
Arnaud Lepage
Nicola Paletta
机构
[1] Dream Innovation Srl,ONERA—The French Aerospace Lab
[2] Centre de Châtillon 29,undefined
[3] IBK Innovation GmbH Co. KG,undefined
来源
Aerotecnica Missili & Spazio | 2021年 / 100卷 / 4期
关键词
Computational fluid dynamics (CFD); RANS; Gust generator; Transonic wind tunnel;
D O I
10.1007/s42496-021-00098-y
中图分类号
学科分类号
摘要
This article presents the aerodynamic design of the airfoil of the gust generator system being developed in the GUDGET project and conceived to generate high-amplitude gusts in a transonic wind tunnel. The system is made of vanes creating a flow deviation in turn by flapping around a rotational axis or by blowing air though a suitable sonic jet located close to the vane trailing edge. The airfoil shape optimization has been carried out using a design of experiment technique (DOE) and response surface optimization along with URANS CFD. The computational model has been preliminarily validated using data provided by ONERA for the baseline design at a lower Mach number (M=0.73\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {M}=0.73$$\end{document}) and then compared with the one actually required by GUDGET in the test chamber (M=0.82\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {M}=0.82$$\end{document}). All the cases have been optimized at a frequency of 40 Hz and then investigated at a frequency of 80Hz.
引用
下载
收藏
页码:345 / 362
页数:17
相关论文
共 50 条
  • [21] Design of a morphing airfoil using aerodynamic shape optimization
    Secanell, M.
    Suleman, A.
    Gamboa, P.
    AIAA Journal, 2006, 44 (07): : 1550 - 1562
  • [22] Design of a morphing airfoil using aerodynamic shape optimization
    Secanell, M.
    Suleman, A.
    Gamboa, P.
    AIAA JOURNAL, 2006, 44 (07) : 1550 - 1562
  • [23] Wall Ventilation Effects upon the Flow about an Airfoil in a Transonic Wind Tunnel
    Goffert, B.
    Ortega, M. A.
    Falcao Filho, J. B. P.
    EXPERIMENTAL TECHNIQUES, 2016, 40 (02) : 461 - 481
  • [24] Numerical study of wind-tunnel walls effects on transonic airfoil flow
    Garbaruk, A., 1600, American Inst. Aeronautics and Astronautics Inc. (41):
  • [25] NOTE ON TRANSONIC FLOW PAST A THIN AIRFOIL OSCILLATING IN A WIND-TUNNEL
    SAVKAR, SD
    JOURNAL OF SOUND AND VIBRATION, 1976, 46 (02) : 195 - 207
  • [26] Numerical study of wind-tunnel walls effects on transonic airfoil flow
    Garbaruk, A
    Shur, M
    Strelets, M
    Spalart, PR
    AIAA JOURNAL, 2003, 41 (06) : 1046 - 1054
  • [27] Wall Ventilation Effects upon the Flow about an Airfoil in a Transonic Wind Tunnel
    B. Goffert
    M. A. Ortega
    J. B. P. Falcão Filho
    Experimental Techniques, 2016, 40 : 461 - 481
  • [28] ACTIVE GENERATION OF WIND GUST IN A 2-DIMENSIONAL WIND-TUNNEL
    KOBAYASHI, H
    HATANAKA, A
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 1992, 42 (1-3) : 959 - 970
  • [29] Computational Assessment of Transonic Airfoil-Gust Aeroelastic Response
    Halder, Rahul
    Damodaran, Murali
    Cheong Khoo, Boo
    AIAA JOURNAL, 2022, 60 (04) : 2597 - 2614
  • [30] Design of aerodynamic optimization shape digital model for car and it's wind tunnel test
    He, Yi-Bin
    Gu, Zheng-Qi
    Li, Wei-Ping
    Jiang, Tao
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2010, 25 (05): : 1031 - 1035