Analytical solutions of the DKP equation under Tietz-Hua potential in (1 + 3) dimensions

被引:3
|
作者
Ikot A.N. [1 ]
Molaee Z. [2 ]
Maghsoodi E. [3 ]
Zarrinkamar S. [2 ]
Obong H.P. [1 ]
Hassanabadi H. [4 ]
机构
[1] Department of Physics, University of Port Harcourt, Choba,P MB Port Harcourt
[2] Department of Basic Sciences, Garmsar Branch, Islamic Azad University, Garmsar
[3] Department of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood
[4] Department of Physics, Shahrood University of Technology, P. O. Box 3619995161-316, Shahrood
关键词
energy eigenvalues and eigen-function; Nikiforov method; Relativistic Duffin-Kemmer-Petiau equation; spin-one particles; Tietz-Hua potential;
D O I
10.1134/S1547477115020144
中图分类号
学科分类号
摘要
The approximate relativistic Duffin-Kemmer-Petiau equation with Tietz-Hua potential in (1 + 3) dimension for spin one particles is investigated by approximating the centrifugal term by Pekeris approximation and using parametric generalization of Nikiforov method to obtain the bound state solution. The energy eigenvalues and eigen-function is obtained in closed form. © 2015, Pleiades Publishing, Ltd.
引用
收藏
页码:275 / 281
页数:6
相关论文
共 50 条
  • [31] Exact analytical versus numerical solutions of Schrödinger equation for Hua plus modified Eckart potential
    H. Hassanabadi
    B. H. Yazarloo
    A. N. Ikot
    N. Salehi
    S. Zarrinkamr
    [J]. Indian Journal of Physics, 2013, 87 : 1219 - 1223
  • [32] Approximate solutions of Schrodinger equation and thermodynamic properties with Hua potential
    Njoku, I. J.
    Onyenegecha, C. P.
    Okereke, C. J.
    Opara, A. I.
    Ukewuihe, U. M.
    Nwaneho, F. U.
    [J]. RESULTS IN PHYSICS, 2021, 24
  • [33] An approximate solution of the DKP equation under the Hulthén vector potential
    S.Zarrinkamar
    A.A.Rajabi
    B.H.Yazarloo
    H.Hassanabadi
    [J]. Chinese Physics C., 2013, 37 (02) - 8
  • [34] An approximate solution of the DKP equation under the Hulthén vector potential
    S.Zarrinkamar
    A.A.Rajabi
    B.H.Yazarloo
    H.Hassanabadi
    [J]. Chinese Physics C, 2013, (02) : 5 - 8
  • [35] Solutions of the Klein-Gordon equation with the improved Tietz potential energy model
    Liu, Han-Bin
    Yi, Liang-Zhong
    Jia, Chun-Sheng
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2018, 56 (10) : 2982 - 2994
  • [36] Approximate Analytical Solutions of the Improved Tietz and Improved Rosen-Morse Potential Models
    Akanni, Yahya Wasiu
    Kazeem, Issa
    [J]. CHINESE JOURNAL OF PHYSICS, 2015, 53 (03)
  • [37] DKP EQUATION UNDER A VECTOR HULTHEN-TYPE POTENTIAL: AN APPROXIMATE SOLUTION
    Zarrinkamar, S.
    Rajabi, A. A.
    Rahimov, H.
    Hassanabadi, H.
    [J]. MODERN PHYSICS LETTERS A, 2011, 26 (22) : 1621 - 1629
  • [38] Approximate Solutions of the Dirac Equation for the Hua Plus Modified Eckart Potential
    A. N. Ikot
    E. Maghsoodi
    A. D. Antia
    H. Hassanabadi
    S. Zarrinkamar
    [J]. Arabian Journal for Science and Engineering, 2015, 40 : 2063 - 2077
  • [39] Molecular Study on the DKP Equation in (1+3) Dimensions with Isotropic Oscillator plus Inverse Quadratic Potential in Non-Commutative Space
    Oluwadare, O. J.
    Abiola, T. O.
    Odo, E. A.
    Olubosede, O.
    Oyewumi, K. J.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (05)
  • [40] Approximate Solutions of the Dirac Equation for the Hua Plus Modified Eckart Potential
    Ikot, A. N.
    Maghsoodi, E.
    Antia, A. D.
    Hassanabadi, H.
    Zarrinkamar, S.
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2015, 40 (07) : 2063 - 2077