Resource Allocations for Ultra-Reliable Low-Latency Communications

被引:15
|
作者
Shariatmadari H. [1 ]
Duan R. [1 ]
Iraji S. [1 ]
Li Z. [2 ]
Uusitalo M.A. [2 ]
Jäntti R. [1 ]
机构
[1] Department of Communications and Networking, Aalto University, Espoo
[2] Nokia Bell Labs, Espoo
关键词
5G; Feedback channel; Link adaptation; Machine-type communications; Resource allocations; Ultra-reliable low-latency communications;
D O I
10.1007/s10776-017-0360-5
中图分类号
学科分类号
摘要
Ultra-reliable low-latency communications (URLLC) is a new feature to be considered for the fifth generation (5G) cellular systems. This feature is essential for the support of envisioned mission-critical applications, particularly in the realm of machine-type communications. These applications require that the messages, which are generally short-length packets, to be exchanged between a source and a destination with the high level of reliability and within a short period of time. The characteristics of URLLC do not fit directly in the conventional communication models. For instance, most of the existing communication models are developed considering moderate levels of reliability, neglecting the small effects of the feedback errors. However, even such small errors cannot be ignored for URLLC. This paper proposes a communication model for URLLC considering the reliabilities of both data and control channels. Then, the optimal and sub-optimal resource allocations are derived. We show that the proposed sub-optimal resource allocations have lower computational complexities with a negligible performance degradations compared to that of the optimal solutions. The results reveal that the possibility of performing only one retransmission can significantly reduce the required radio resources needed for data delivery compared to the case of performing a single transmission round. © 2017, Springer Science+Business Media New York.
引用
下载
收藏
页码:317 / 327
页数:10
相关论文
共 50 条
  • [11] Ultra-Reliable Low-Latency Communications in Autonomous Vehicular Networks
    Ge, Xiaohu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (05) : 5005 - 5016
  • [12] 5G FOR ULTRA-RELIABLE LOW-LATENCY COMMUNICATIONS
    Soldani, David
    Guo, Y. Jay
    Barani, Bernard
    Mogensen, Preben
    I, Chih-Lin
    Das, Sajal K.
    IEEE NETWORK, 2018, 32 (02): : 6 - 7
  • [13] Underlay Scheduling Request for Ultra-Reliable Low-Latency Communications
    Moradi, Hussein
    Farhang-Boroujeny, Behrouz
    2019 IEEE 2ND 5G WORLD FORUM (5GWF), 2019, : 28 - 33
  • [14] Handover Mechanism in NR for Ultra-Reliable Low-Latency Communications
    Park, Hyun-Seo
    Lee, Yuro
    Kim, Tae-Joong
    Kim, Byung-Chul
    Lee, Jae-Yong
    IEEE NETWORK, 2018, 32 (02): : 41 - 47
  • [15] Ultra-reliable and low-latency communications: applications, opportunities and challenges
    Daquan Feng
    Lifeng Lai
    Jingjing Luo
    Yi Zhong
    Canjian Zheng
    Kai Ying
    Science China Information Sciences, 2021, 64
  • [16] Mobile Edge Computing for Ultra-Reliable and Low-Latency Communications
    Jiang, Kai
    Zhou, Huan
    Chen, Xin
    Zhang, Haijun
    IEEE Communications Standards Magazine, 2021, 5 (02): : 68 - 75
  • [17] Ultra-reliable and low-latency communications: applications, opportunities and challenges
    Feng, Daquan
    Lai, Lifeng
    Luo, Jingjing
    Zhong, Yi
    Zheng, Canjian
    Ying, Kai
    SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (02)
  • [18] Performance Analysis of NOMA for Ultra-Reliable and Low-Latency Communications
    Amjad, Muhammad
    Musavian, Leila
    2018 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2018,
  • [19] Predicting Wireless Channels for Ultra-Reliable Low-Latency Communications
    Swamy, Vasuki Narasimha
    Rigge, Paul
    Ranade, Gireeja
    Nikolic, Borivoje
    Sahai, Anant
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 2609 - 2613
  • [20] Physical Layer Security for Ultra-Reliable and Low-Latency Communications
    Chen, Riqing
    Li, Chunhui
    Yan, Shihao
    Malaney, Robert
    Yuan, Jinhong
    IEEE WIRELESS COMMUNICATIONS, 2019, 26 (05) : 6 - 11