Machine learning techniques for dental disease prediction

被引:0
|
作者
Iffat Firozy Rimi
Md. Ariful Islam Arif
Sharmin Akter
Md. Riazur Rahman
A. H. M. Saiful Islam
Md. Tarek Habib
机构
[1] Daffodil International University,Department of Computer Science and Engineering
[2] Notre Dame University Bangladesh,Department of Computer Science and Engineering
关键词
Dental disease; Expert system; Caries risk prediction; Machine learning; Logistic regression;
D O I
10.1007/s42044-022-00101-0
中图分类号
学科分类号
摘要
Oral diseases are increasing at the same rate as infectious diseases and non-communicable diseases all over the world. More than eighty percent of the total population suffers from one or more dental diseases, of which periodontitis, gingivitis, and carcinoma are among them. In this work, we used a machine learning approach for dental disease prediction in the context of the daily behavior of the people of a country. We discussed with the concerned doctors and the dentist the important factors of dental disease. With all these important factors in mind, we started collecting data from the general people and dental disease patients. After data collection and preprocessing, we used nine eminent machine-learning algorithms namely k-nearest neighbors, logistic regression, SVM, naïve Bayes, classification and regression trees, random forest, multilayer perception, adaptive boosting, and linear discriminant analysis. For the task of assessment, we reviewed the performance of each classifier using accuracy and some noteworthy performance metrics. Logistic regression classifier outflanks every single other classifier regarding all measurements utilized by accomplishing an accuracy approaching 95.89%. On the basis thereof, AdaBoost shows not only deficient consequence of an accuracy approaching 34.69% but also some deficient outcomes in other metrics.
引用
收藏
页码:187 / 195
页数:8
相关论文
共 50 条
  • [21] Risk Prediction of Diabetic Disease Using Machine Learning Techniques
    Tamanna
    Kumari, Ritika
    Bansal, Poonam
    Dev, Amita
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 1, SMARTCOM 2024, 2024, 945 : 197 - 209
  • [22] Machine Learning Techniques for Soybean Charcoal Rot Disease Prediction
    Khalili, Elham
    Kouchaki, Samaneh
    Ramazi, Shahin
    Ghanati, Faezeh
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [23] A Survey on Plant Disease Prediction using Machine Learning and Deep Learning Techniques
    Gokulnath, B., V
    Devi, Usha G.
    INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE, 2020, 23 (65): : 136 - 154
  • [24] Performance evaluation of different machine learning techniques for prediction of heart disease
    Dwivedi, Ashok Kumar
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (10): : 685 - 693
  • [25] Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques
    Mohan, Senthilkumar
    Thirumalai, Chandrasegar
    Srivastava, Gautam
    IEEE ACCESS, 2019, 7 : 81542 - 81554
  • [26] Revolutionizing Diabetes Disease Prediction Through Novel Machine Learning Techniques
    Singh, Yogendra
    Tiwari, Mahendra
    NANO, 2024, 19 (04)
  • [27] Thyroid Disease Prediction Using Selective Features and Machine Learning Techniques
    Chaganti, Rajasekhar
    Rustam, Furqan
    De la Torre Diez, Isabel
    Vidal Mazon, Juan Luis
    Lili Rodriguez, Carmen
    Ashraf, Imran
    CANCERS, 2022, 14 (16)
  • [28] Machine Learning Techniques for Heart Disease Prediction: A Comparative Study and Analysis
    Rahul Katarya
    Sunit Kumar Meena
    Health and Technology, 2021, 11 : 87 - 97
  • [29] Creutzfeldt-Jakob Disease Prediction Using Machine Learning Techniques
    Bhakta, Arnav
    Byrne, Carolyn
    2021 IEEE 9TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2021), 2021, : 535 - 542
  • [30] Machine Learning Techniques for Heart Disease Prediction: A Comparative Study and Analysis
    Katarya, Rahul
    Meena, Sunit Kumar
    HEALTH AND TECHNOLOGY, 2021, 11 (01) : 87 - 97